22084434, Sefia Candra (2012) CLUSTERING TAGGING STATUS FACEBOOK DENGAN MENGGUNAKAN ALGORITMA K-MEDOIDS. Final Year Projects (S1) thesis, Universitas Kristen Duta Wacana.
Text (Skripsi Informatika)
22084434_bab1_bab5_daftarpustaka.pdf Download (2MB) |
|
Text (Skripsi Informatika)
22084434_bab2-sd-bab4_lampiran.pdf Restricted to Registered users only Download (4MB) | Request a copy |
Abstract
Facebook merupakan jejaring sosial yang terkenal di dunia yang membantu pengguna untuk menjalin pertemanan yang sangat luas. Pengguna Facebook dapat menjalin pertemanan dengan ratusan bahkan ribuan teman, baik yang dikenal maupun yang tidak. Akan tetapi, ketika pertemanan menjadi begitu besar, akan sangat sulit untuk memilah-milah informasi, informasi mana yang ingin diterima dan yang akan dibagikan ke teman lain. Facebook sendiri berusaha untuk menyelesaikan masalah tersebut dengan meningkatkan fitur dalam daftar pertemanan, yaitu dengan membuat daftar teman dan mengelompokkan teman secara otomatis dan up-to-date berdasarkan informasi pengguna Facebook, seperti berdasarkan sekolah, tempat kerja, keluarga, dan domisili. Namun, pengelompokkan tersebut masih terlalu luas dan tidak dapat menggambarkan suatu kelompok individu yang saling berhubungan baik. Melihat masalah di atas, penulis membangun sebuah aplikasi berbasis algoritma K-Medoids untuk menemukan cluster-cluster pada daftar teman pengguna Facebook. Proses untuk menemukan cluster-cluster tersebut menggunakan nilai jalur terkuat, di mana nilai jalur terkuat didasarkan pada frekuensi interaksi tagging pada status update yang dilakukan antar satu teman ke teman yang lain. Sistem yang dibangun telah mampu menemukan cluster-cluster dalam daftar teman Facebook dengan baik. Dengan uji coba menggunakan 3, 5, dan 7 jumlah cluster didapatkan peringkat rata-rata nilai purity tertinggi, yaitu tiga jumlah cluster dengan rata-rata 0,8806, tujuh jumlah cluster dengan rata-rata 0,7114, dan lima jumlah cluster dengan rata-rata 0,6368. Rata-rata nilai purity dari hasil penelitian adalah 0,7430.
Item Type: | Student paper (Final Year Projects (S1)) |
---|---|
Subjects: | Q Ilmu Pengetahuan > Matematika > Komputer Elektronik. Ilmu Komputer Q Ilmu Pengetahuan > Matematika > Perangkat Lunak (Software) Komputer |
Divisions: | Fakultas Teknologi Informasi > Prodi Informatika |
Depositing User: | Ms Lea Destiany |
Date Deposited: | 21 Jun 2021 02:12 |
Last Modified: | 21 Jun 2021 02:12 |
URI: | http://katalog.ukdw.ac.id/id/eprint/3824 |
Actions (login required)
View Item |