71120001, HIZKIA JUAN SURYANTO (2016) INDOOR POSITIONING SYSTEM DENGAN ALGORITMA K-MEANS DAN KNN STUDI KASUS: UNIVERSITAS KRISTEN DUTA WACANA. Final Year Projects (S1) thesis, Universitas Kristen Duta Wacana.
Text (Skripsi Informatika)
71120001_bab1_bab5_daftarpustaka.pdf Download (2MB) |
|
Text (Skripsi Informatika)
71120001_bab2-sd-bab4_lampiran.pdf Restricted to Registered users only Download (3MB) | Request a copy |
Abstract
Indoor Positioning System (IPS) merupakan sistem penentuan posisi seseorang dalam konteks indoor. Salah satu cara yang umum digunakan adalah dengan memanfaatkan data kuat sinyal WiFi. Dalam penelitian ini, sistem dibangun dengan memanfaatkan data kuat sinyal WiFi dari 177 Access Point (AP) yang tersebar di 11 gedung yang ada di Universitas Kristen Duta Wacana (UKDW). Total data kuat sinyal yang dijadikan data pelatihan sejumlah 11568 data Received Signal Strength (RSS) dari 42 ruang publik. Sistem dibangun dengan menerapkan algoritma klusterisasi K-Means dan algoritma klasifikasi KNN. Proses klusterisasi dilakukan untuk membagi data latih menjadi beberapa kluster, kemudian proses klasifikasi dilakukan untuk menentukan posisi akhir seseorang. Proses pengujian dan analisis sistem dilakukan menggunakan metode K-Fold Cross Validation dengan jumlah fold 10. Proses tersebut menguji proses klusterisasi dengan pilihan k=2 hingga k=11, sedangkan proses klasifikasi diuji dari pilihan k=1 hingga k=5. Proses klusteriasi dan pengujian diimplementasi pada aplikasi desktop. Dari hasi pengujian yang dilakukan pada aplikasi desktop, nilai k optimal yang didapat dari masing-masing proses diimplementasi pada aplikasi mobile. Berdasarkan hasil penelitian, sistem berhasil mengimplementasi algoritma klusterisasi K-Means dan klasifikasi KNN untuk menentukan posisi seseorang dalam konteks indoor. Persentase akurasi yang dihasilkan adalah 88.49% dimana nilai k optimal yang didapat adalah k=10 untuk proses klusterisasi, dan k=1 untuk proses klasifikasi.
Item Type: | Student paper (Final Year Projects (S1)) |
---|---|
Uncontrolled Keywords: | clustering, classification, indoor positioning system, K-Means, KNN. |
Subjects: | Q Ilmu Pengetahuan > Matematika > Komputer Elektronik. Ilmu Komputer |
Divisions: | Fakultas Teknologi Informasi > Prodi Informatika |
Depositing User: | mr Kristofer Bayu Pamungkas |
Date Deposited: | 23 Oct 2020 07:37 |
Last Modified: | 23 Oct 2020 07:37 |
URI: | http://katalog.ukdw.ac.id/id/eprint/2845 |
Actions (login required)
View Item |