71130066, Andro Ardiyanto (2017) KLASIFIKASI KOMENTAR PADA DATASET PEMILU PRESIDEN INDONESIA 2014 DENGAN METODE IMPROVED K-NEAREST NEIGHBOR. Final Year Projects (S1) thesis, Universitas Kristen Duta Wacana.
Text (Skripsi Informatika)
71130066_bab1_bab5_daftarpustaka.pdf Download (860kB) |
|
Text (Skripsi Informatika)
71130066_bab2-sd-bab4_lampiran.pdf Restricted to Registered users only Download (4MB) | Request a copy |
Abstract
Perbedaan porsi data latih dari setiap kategori dapat mempengaruhi hasil klasifikasi untuk lebih condong ke arah porsi data latih yang paling besar. Pada algoritma k-Nearest Neighbor, nilai k berpengaruh dalam menentukan proses klasifikasi dari suatu data uji. Proses klasifikasinya juga tergantung porsi data terbanyak dari tetangga yang diambil, kemunculan paling banyak pada jumlah tetangga terdekatnya. Improved KNN muncul untuk mengatasi hal tersebut. Dalam hal ini dataset yang dipakai memiliki jumlah total 2796 data (2406 data positif dan 390 data negatif). Pertama-tama data uji akan melalui proses preprocessing yang terdiri dari (convert emoticon, cleansing, casefolding, tokenizing, filtering, stemming). Data tersebut akan diberi bobot sesuai dengan TF-IDF lalu akan dilanjutkan pada proses cos-similiarity. Pada proses tersebut akan terjadi pemilihan jumlah tetangga terbesar sesuai nilai k, lalu proses improvement KNN dijalankan dan data uji tersebut diklasifikasikan. Penelitian ini menghasilkan bahwa Improved KNN sukses dalam menaikkan akurasi pengklasifikasian. Penggunaan feature selection meningkatkan akurasi pada data latih dengan perbedaan 1800 data sebanyak 1,01%, dari 76,52% menjadi 77,53%. Peningkatan akurasi terbesar sebesar 1,48% terjadi pada skenario dengan ketimpangan data latih 900 buah, sedangkan pada data seimbang dan perbedaan data latih 300 buah, tidak terjadi perubahan akurasi jika dibandingkan dengan Default KNN.
Item Type: | Student paper (Final Year Projects (S1)) |
---|---|
Uncontrolled Keywords: | text mining, improved k-nn, knn, sentimen analyst |
Subjects: | Q Ilmu Pengetahuan > Matematika > Komputer Elektronik. Ilmu Komputer |
Divisions: | Fakultas Teknologi Informasi > Prodi Informatika |
Depositing User: | Users 37 not found. |
Date Deposited: | 03 Nov 2020 07:56 |
Last Modified: | 09 Jun 2021 02:30 |
URI: | http://katalog.ukdw.ac.id/id/eprint/1738 |
Actions (login required)
View Item |