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ABSTRACT: Every time a well-known public figure posts something on social media, it encourages many 

users to comment. Unfortunately, not all comments are relevant to the post. Some are spam comments 

which can disrupt the overall flow of information. This research employed two strategies to address issues 

in text spam detection on social media. The first strategy was utilizing emojis that had been frequently 

discarded in many studies. In fact, many social media users use emojis to convey their intentions. The 

second strategy was utilizing stacked post-comment pairs, which was different from many spam detection 

systems that solely focused on comment-only data. The post-comment pairs were required to detect whether 

a comment was relevant (not spam) or spam based on the post context. This research used the SpamID-Pair 

dataset derived from social media for Indonesian spam comment detection. After a comprehensive 

investigation, the emoji-text feature, the stacked post-comment pairs, and ensemble voting could boost 

detection performance (in terms of accuracy and F1). Adding manual features also improved detection 

performance. Based on the experiment, the best stand-alone methods for spam comment detection are the 

SVM (RBF kernel) and the soft voting ensemble method for the best average performance. 

INDEX TERMS spam detection, ensemble method, emoji feature, post-comment pair, social media. 

I. INTRODUCTION 

Social media enables people to share their ideas and 

aspirations, collaborate, conduct business, promote products, 

and participate in politics. Popular social media platforms 

include Facebook (FB) for more formal or semi-formal text 

and image media, YouTube (YT) for semi-formal videos, 

Tik-Tok (TT) for non-formal videos, Instagram (IG) for 

semi-formal and non-formal text, images, and videos, and 

Twitter (TW) for semi-formal and non-formal text and 

images [1]. These social media have large user bases, are 

fully- and well-functioning, and are used by celebrities to 

increase their popularity. 

Public figures who have large numbers of followers on 

social media include celebrities. Many celebrities utilize 

social media for promoting their activities, increasing their 

popularity, interacting with their followers, and other 

purposes. The more famous the celebrities are, the greater 

number of followers they have. With more followers, 

celebrities can interact with their fans more frequently [2]. As 

is characteristic of Web 2.0, users can now comment 

creatively on celebrities’ feeds. 

TW, YT, and IG are frequently used in spam detection 

research because these social media contain a lot of spam 

accounts and spam content. Particularly in Indonesia, spam 

content is usually found in comments against Indonesian 

artists, especially on IG [2]. Figure 1 depicts an example of a 

post and spam comments on social media in Indonesia of the 

@ayutingting account. Spam comments are very annoying 

and can disrupt the flow of information in the comments on a 

given post/status. Although some social media platforms 

already have spam filters, these are limited to English. 

Another problem is the limited publicly available datasets 

for identifying spam text on social media. Most datasets on 

social media are found in English, and obtaining datasets in 
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other languages, including Indonesian, is challenging.  Many 

researchers conducted similar studies using their own 

collected datasets without sharing them.  

 

FIGURE 1. Example of A Public Figure’s Post and Spam 
Comments on Social Media in Indonesia 
(https://www.instagram.com/p/CoRJyJgKaQP/)  

SpamID-Pair1 is a dataset provided for spam content 

detection in the Indonesian language available in Mendeley 

Data Repository. SpamID-Pair provides posts from 

Indonesian artists and their comments as pairs labeled 

spam/not spam. This dataset includes many emojis, which 

are widely used on social media. Users on social media 

frequently utilize emojis to describe their emotions and 

intentions. However, in various research in the Natural 

Language Processing (NLP) field, most emoji features are 

discarded/not used [3]. 

Studies of spam content detection have been previously 

conducted [4]–[9]. However, detecting spam content, 

particularly spam comments, is difficult due to multiple 

causes, for example: 1) the very unstructured and abnormal 

form of comment text; 2) the number of symbols and 

emoticons used by users; 3) the number of typos, intentional 

abbreviations, non-standard words, and mixed language 

usage; 4) some content is intentionally camouflaged to avoid 

being detected as spam, such as using the \/ sign instead of 

the letter V which becomes unreadable by the system; 5) the 

comments are spam but contain very subtle ads; and 6) the 

system fails to recognize the semantic meaning or semantic 

relationship between posts and comments. These issues are 

complex, require investigations, and necessitate many 

mutually supporting solution modules. 

Some machine learning techniques in NLP can be used to 

identify spam comments. Based on [10], 14 best Machine 

Learning (ML) classification methods have been studied and 

compared, namely Support Vector Machine (SVM), Random 

Forest (RF), Logistic Regression (LR), Extreme Gradient 

Boosting (XGBoost), K-Nearest Neighbor (KNN), Ada 

 
1 SPAMID-PAIR on Mendeley Data Repository 

(https://data.mendeley.com/datasets/fj5pbdf95t) 

Boost (AB), Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP), and Decision Tree (DT). Machine learning 

techniques, also known as shallow learning techniques, are 

increasingly developing toward deep learning, which requires 

different learning techniques. 

In this paper, the authors compared and explored the 

SpamID-Pair dataset collected from 12 celebrities with over 

15 million followers [11] with different machine learning 

techniques according to [10] plus Complement Naïve Bayes 

(CNB) and Extra Tree (ET). This research made a 

contribution by providing comprehensive experimental 

results of spam detection performance (accuracy and F1) 

between non-emoji and emoji features with various 

combinations of hyperparameter scenarios (n-grams features, 

balanced/unbalanced data, the use of comment-only/post-

comment pairs approach) using state-of-the-art machine 

learning and ensemble voting methods as well as their 

analysis [10].  This research also offers a new approach that 

uses post and comment text as pair-stacked input in machine 

learning to identify spam comments based on the posting 

context. This research uses NLP techniques on the 

Indonesian SpamID-Pair dataset. 

The rest of the article is written as follows: 1) the 

introduction section that contains the background of spam on 

social media, the spam detection research problem, and our 

proposed research contribution; 2) the literature review 

section that includes up-to-date literature and theoretical 

references about spam detection using ML and ML 

algorithms; 3) the research methodology section that 

describes the scientific method used in this research, 

including the dataset used, pre-processing, implementation of 

14 ML methods, and evaluation method; 4) the results-and-

discussion section which describes the proposed ensemble 

models' experiments, results, analysis, and discussions; and 

5) the conclusion section which explains our conclusion and 

suggestions for further research. 

II. LITERATURE REVIEW 

Some research on spam content detection has been conducted 

previously. Spam detection was mainly done in text 

messages [12], such as in the Short Message Services (SMS) 

[13], [14], which employed the UCI SMS dataset with the 

CNN method using auxiliary hand-engineered features [13]. 

Spam SMS was also detected using RNN-LSTM and LSTM 

only, which were also compared to machine learning 

methods [14]. Besides messages, there is much spam content 

on social media.  Spam content can be found on social media 

like IG, FB, and TW [17]. 

Article [4] detected spam content based on spammers’ 

accounts on IG in English. This study used Random Forest 

(RF) to detect the text content datasets totaling 1983 and 

953808 media using their proposed method with special 

hand-engineered addition features. The significant hand-

engineered features are a) the presence/absence of mention 

tags to another users; b) the hashtags number used, 
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particularly the hashtags used that are not related to the 

content; c) the presence or absence of repeated words; d) 

specific keywords which tend to be spam as defined; and e) 

the presence/absence of watermarks on images. Using hand 

engineered features and k=10 in k-fold validation, the result 

reached 96.27%. Utilizing features that necessitated manual 

extraction was one of the limitations of the research. 

The research [15] differed from [4] in that it employed 

Indonesian rather than English and did not detect spam posts 

but rather spam comments. The dataset used in  [15] came 

from a publicly available dataset of Indonesian accounts. 

However, in contrast to what the authors did, the spam 

comments referenced in the study [15] were Indonesian-

language comments with promotional purposes (such as 

advertising products). The combination of 1) keyword, 2) 

content text, and 3) hand-engineered features were employed. 

The handcrafted characteristics included the number of 

capital letters, the comment length, and the number of 

emoticons. Methods used in [15] did not use the emoji 

features. The keyword feature in the study consisted of 

specific keywords identified as selling/promoting particular 

products and extracted using an NLP regular expression 

pattern. Finally, the text features were extracted and weighted 

through various configurations of TFIDF, Bag of Words, and 

FastText techniques. Nave Bayes, SVM, and XGBoost were 

the classification methods used. Based on [15], it was found 

that using all of the features (features 1, 2, and 3) resulted in 

an F1 score of 96%. According to the research presented in 

[15], the employed characteristics were highly contingent on 

the dataset and cannot be applied to all new data, particularly 

for keywords retrieved using regular expressions. 

Research on Indonesian spam comment detection, 

particularly on Instagram, was still rare. A study in [5] 

employed the Nave Bayes (NB) algorithm to detect 

Indonesian spam comments with a 72% accuracy rate. In 

contrast, [6] employed the opposite Nave Bayes algorithm, 

Complementary Naïve Bayes (CNB), because it used an 

unbalanced dataset between non spam and spam comments. 

With more non-spam comments than spam, the CNB 

algorithm could achieve an accuracy of 92%, while SVM 

only achieved 87%.  Recent research on social media spam 

detection, including methods, results, datasets, emoji usage, 

and post context, is presented in Table I.  Table I 

demonstrates that most researchers utilized privately 

compiled datasets. 

SpamID-Pair is one of the available datasets and is taken 

from social media. The hallmark of this dataset is that it 

includes a large number of emojis that are included in the 

content. This dataset is also distinctive because the data 

consists of pairs of posts and comments labeled as spam or 

non-spam. The social media used in this dataset is IG. The 

reason is that IG is a popular social media with many users, 

and many public figures use it. Consequently, much spam is 

detected, especially in the comments of public figures on 

Instagram. IG data contains informal language, lots of 

emoticons/emojis, some of typos and abbreviations, lots of 

code mixes (mixed languages), comments of varying lengths 

but relatively short (1-3 sentences @ five words), a post-

reply structure with no hierarchical data, and mention tags 

(using the symbol '@') [9]. 
TABLE I.  RECENT RESEARCH OF SPAM DETECTION ON SOCIAL MEDIA 

Methods Language Results Datasets Emoji 

and 

Post 

Year 

NB, 

SVM, 
XGB 

INA F1: 0.96 

(SVM) 

IG 

comments 
(private 

datasets) 

24602 data 

No 2017 

[15] 

RF ENG Acc: 0.96 IG profile 

(private 

dataset) 

1983 

profiles 

No 2017 [4] 

NB INA Acc: 0.77 
(balanced) 

IG 
comments 

(private 

dataset) 
14500 data 

No 2017 
[16] 

RF, SVM, 

NB 

ENG F1: 0.95 

(SVM) 

YT 

comments 
(private 

dataset) 

13000 

No 2018 [2] 

AGA, 

ANN, 

SVM 

ENG Acc: 0.99 

(AGA) 

YT 

comments 

(private 
dataset) 

No 2018 

[17] 

NB, LR ENG Acc: 0.87 

(LR) 

YT 

comments 
(private) 

1956 data) 

No 2019 

[18] 

NB, CNB INA F1:0.94 
(CNB) 

IG 
comments 

(private) 

No 2019 [6] 

RF, NB, 
DT 

ENG Acc: 0.90 
(RF) 

YT 
comment 

UCI 

No 2019 
[19] 

LSTM, 
CNN 

BGL Acc: 0.95 
(CNN) 

Social 
Media 

No 2019 
[20] 

NB INA F1: 0.83 IG 

comment 
(private) 

700 data 

No 2019 [5] 

LR, DT, 

RF, AB, 

SVM 

ENG Acc: 0.95 

(SVM) 

YT 

comments 

(private) 

400000 

data 

No 2020 

[21] 

KNN, 
DW-KNN 

INA Acc: 0.91 
(DWKNN) 

IG 
comments 

(private) 

14500 

No 2020 [8] 

DT, KNN, 

SVC, GB, 

NB 

ENG Acc: 0.78 

(NB) 

FB 

comment 

(private) 
2759 data, 

unbalanced 

No 2021 

[22] 

CNN INA Acc: 0.97 
(CNN 

multi 

modal) 

IG posts 
image and 

text 

(private) 
8000 data 

No 2021 
[23] 
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CART, 

LR, NB, 

RF, SVM, 
ANN, 

ESM 

ENG Acc: 0.95 

(ESM) 

YT 

comments 

(private) 6 
million 

data 

No 2021 

[24] 

DT, SVM, 
NB, RF, 

KNN 

ARB Acc: 0.84 
(SVM) 

YT 
comments 

(private) 

40000 data 

No 2022 
[25] 

SVM, RF ENG Acc: 0.95 

(SVM) 

YT 

comments 

on UCI 
1956 data 

No 2022 

[26] 

14 ML 

Methods 
(Ensemble 

Voting) 

INA Acc, F1 IG 

SpamID- 
Pair 

(public) 

Yes Our 

proposed 
(2023) 

NB: Naïve Bayes; SVM: Support Vector Machine; XGB: eXtreme Gradient 

Boosting RF: Random Forest; AGA: Advanced Gradient; LR: Logistics 

Regression; CNB: Complement Naïve Bayes; DT: Decision Tree; LSTM: 

Long-sort Term Memory; AB: AdaBoost; KNN: K-Nearest Neighbor; DW-

KNN: Distance Weighted KNN; GB: Gradient Boosting; CART: Decision 

Tree Variant; ANN: Artificial Neural Network; ESM: Ensemble Softmax. 

The pre-processing phase was nearly identical to that of 

numerous studies that employed text data. NLP techniques 

were required for most pre-processing in detecting spam 

remarks or posts. Several references, such as [27]–[29], 

explained the importance of text pre-processing before 

further processing. Tokenization, case-folding, n-gram 

features, stemming, post-tagging, and stop-words removal 

were the methods that were used. Based on these pre-

processing techniques, stemming techniques had the least 

significant effect. [29].  Besides pre-processing, most 

features in many NLP research features were the text.  Some 

research used tokens feature in the form of BoW or weighted 

tokens in the form of TFIDF [30]. 

A. MACHINE LEARNING FOR TEXT CLASSIFICATION 

There are two distinct approaches to machine learning: 

unsupervised and supervised learning. If it has problems with 

recognition or classification, it falls into supervised learning. 

However, this classification can also be developed using 

weakly-supervised or semi-supervised learning. The weakly 

supervised technique is based on the premise that unlabeled 

data can be labeled using only a small number of dataset 

labels and learning outcomes with a small number of labels. 

Several studies on weak supervision [22] and [23] also 

employed deep learning. 

We primarily used machine learning methods from the 

best classification state-of-the-art methods from research 

[10]. We also combined a few other techniques, so there 

were 14 ML methods used in this research. These methods 

were the Multinomial NB method, Bernoulli Naïve Bayes 

(BNB), Complement Naïve Bayes (CNB), SVM Linear 

(SVML), SVM Radial Basis Function (SVMRBF), KNN 

(n=3), Decision Tree (DT), Random Forest (RF), Ada Boost 

(AB), XGBoost (XGB), Logistic Regression (LR), Extreme 

Tree (ET), Stochastic Gradient Descent (SGD), and Multi-

Layer Perceptron (MLP). Detailed information about the 

techniques used in this study can be seen in Table IIIB. 

Text spam detection belongs to text classification 

problems.  As a text classification problem, we formulated a 

research problem as a document d as a document space (X) 

member, and there were fixed classes/labels C = {c1, c2, c3 

…, cn}.  In spam detection/classification, the document space 

was typically high-dimensional.  We were given a training 

set post-comment (PC) of a labeled document {d,c} where 

{d,c} was a member of X x C [31]. 

Naive Bayes is founded on Bayes' theorem and makes 

naive assumptions for each pair of features and class [32]. 

Theorem of Bayes where y is a class and x1 through xn can be 

formulated as (1): 

𝑃( 𝑦 ∣∣ 𝑥1, … , 𝑥𝑛 ) =
𝑃(𝑦)𝑃( 𝑥1, … , 𝑥𝑛∣∣𝑦 )

𝑃(𝑥1,…,𝑥𝑛)
  (1) 

This formula assumes the naive conditions are independent 

as formula (2): 

𝑃(𝑥𝑖|𝑦, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝑦) (2) 

NB predicts, for all data, whether x belongs to class y with 

the maximum posterior probability, according to the formula 

(3). 

𝑃( 𝑦 ∣∣ 𝑥1, … , 𝑥𝑛 ) =
𝑃(𝑦) ∏ 𝑃( 𝑥𝑖 ∣∣𝑦 )𝑛

𝑖=1

𝑃(𝑥1,…,𝑥𝑛)
  (3) 

Since P(x_1,…,x_n) is constant, (3) can be simplified to 

formula (4) and formula (5) [33]: 

𝑃( 𝑦 ∣∣ 𝑥1, … , 𝑥𝑛 ) ∝ 𝑃(𝑦) ∏ 𝑃( 𝑥𝑖 ∣∣ 𝑦 )𝑛
𝑖=1  (4) 

�̂� = 𝑎𝑟𝑔(𝑚𝑎𝑥)
𝑦

𝑃  (𝑦) ∏ 𝑃( 𝑥𝑖 ∣∣ 𝑦 )𝑛
𝑖=1 ) 

Where 

𝑃(𝑥1, … , 𝑥𝑛|𝑦) =  
1

𝜎𝑖𝑘√2𝜋
 𝑒

( 𝑥𝑘− 𝜇𝑖𝑘)2

2 𝜎𝑖𝑘
2

 

is for continuous attributes. 

The difference between Bernoulli Naïve Bayes (BNB)  

and Multinomial Naïve Bayes (MNB) is well suited for 

handling sorted text (documents), binary attributes, and 

multiple occurrences of tokens are ignored [31]. In addition, 

MNB is superior for handling larger texts, considering 

consecutive attributes and multiple occurrences of tokens.  

Compliment Naïve Bayes (CNB) is a multinomial NB 

variant suitable for working with non-uniform dataset 

distributions (imbalanced datasets).  Instead of computing the 

probability that an item belongs to a particular class, CNB 

calculates the probability that an item belongs to all classes 

[34]. The CNB formula is derived from the formula MNB in 

formula (5), as seen in formula (6). 

�̂� = 𝑎𝑟𝑔(𝑚𝑎𝑥)
𝑦

𝑃  (𝑦) ∏
1

𝑃( 𝑥𝑖 ∣∣𝑦 )

𝑛
𝑖=1 ) 

The SVM method is a technique that is considered to be 

very effective at classifying two classes (binary). It is 
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memory efficient and has numerous kernel techniques that 

can be utilized in various situations. [35]. Vapnik presented 

the SVM algorithm in 1992 as a classifier algorithm based on 

a supervised learning technique. The SVM method seeks and 

locates an x-1-dimensional hyperplane to classify or 

categorize training data with multiple x attributes (the vector 

has x dimensions). The distance (margin) between classes 

must be maximized to locate the hyperplane. Consequently, 

SVM can guarantee that future data are extremely 

generalizable [36]. 

Assume that it is known that training data has been labeled 

and contains multiple x attributes (or pairs), (xi, yi) with i = 1, 

2, 3…, n, where n is the number of training data.  While xi 

represents the set of attributes in the i and yi training data is 

the class of i training data. SVM will calculate the 

optimization problem using equation (7) [37]: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑥
𝑖=1 ) 

With the provisions according to formula (8): 

𝑦_𝑖 (𝑤^𝑇 𝜙(𝑥_𝑖 ) + 𝑏 ≥ 1 −  𝜉_𝑖  , 𝑑𝑎𝑛 𝜉_𝑖 > 0.       (8) 

Kernel function in SVM [33] is a transformation to 

determine the support vector so, which is learned in SVM 

as formulated as K(Xi, Xj) =  Φ(𝑥𝑖). Φ(𝑥𝑗).  Linear kernel is 

formulated as K(Xi, Xj) = 𝑥𝑘 
𝑇 . 𝑥 and radial basis function 

(RBF) as  K(Xi, Xj) = exp {−
||𝑥−𝑥𝑘||

2

2

𝜎2 }. 

K-Nearest Neighbor (KNN) is a type of supervised 

learning in which fresh data is classified based on the 

majority of the k-nearest neighbor category. As the predicted 

value for a new data value, the KNN algorithm employs 

Neighborhood Classification. The use of KNN in text 

classification is illustrated in [38], with an average accuracy 

of 95%. 

KNN calculates the minimum distance between the data to 

be evaluated and the k closest nodes in the training data, 

where k is the number of nearest neighbors. The KNN 

algorithm consists of the following steps: 1) determining k, 

2) calculating similarity / distance between the new and 

existing data, 3) sorting the distance by a threshold called k, 

and 4) selecting the class with the greatest number of 

members that has the nearest distance. The distance formula 

is found in equation (9). 

𝑑 =  √(𝑥2 − 𝑥1)2 + (𝑦2 −  𝑦1)2 (9) 

A gradient-boosting algorithm is used for regression and 

classification problems. The components of this algorithm 

are a weak function, a weak learner, and an adaptive model. 

The loss function is highly dependent on the training dataset; 

weak learners can make predictions, and the additive model 

minimizes the loss function by incorporating weak learners. 

A Decision Tree (DT) is a well-known method for 

classifying data that can be applied to complex problems 

[39].  Iterative Dichotomiser 3 (ID3), C4.5, which abolished 

the limitation of categorical features in ID3 by dynamically 

defining a discrete attribute that partitions the continuous 

attribute value into a discrete set of intervals, and CART 

(Classification and Regression Trees) are examples of DT 

algorithms.  CART is comparable to C4.5, with the exception 

that it supports numerical target variables (regression) and 

does not compute rule sets [33]. CART generates binary trees 

employing the characteristic and threshold that produce the 

greatest information gain at each node.  Gini Impurity is the 

Gini index used by CART for its splitting criterion.  Scikit-

learn employs a CART-optimized algorithm, but categorical 

variables are not presently supported [40]. 

All the classification methods described above are usually 

unstable and can be trapped in overfitting conditions.  There 

are some ensemble learning methods. The main idea of this 

classifier is to use majority voting based on some ensemble 

methods. Some ensemble methods are bagging, boosting, 

stacking, and random forest (random ensemble). Boosting 

technique works to boost the weakest classifier algorithm 

[33].    

Ada Boost is a meta-algorithm that evaluates the classifier 

on the original dataset and then modifies it using the same 

dataset. However, the weight of the incorrectly classified data 

is recalculated in order for the subsequent classifier to 

classify with greater precision [41].  The eXtreme Gradient 

Boosting (XGB) algorithm also includes a boosting 

component [42]. This algorithm combines models with 

limited precision in order to create a model with increased 

precision. The decision tree developed by Tianqi Chen 

functions as the basis for XGBoost. Since XGBoost was 

created as a library, it is compatible with a variety of 

programming languages, including Java, C++, Python, R, 

and Julia. Using L1 and L2 regularization, XGBoost supports 

SGD (Stochastic Gradient Boosting), Regular Gradient 

Boosting, and Regularized Gradient Boosting  [43]. 

Random forest (RF) is a variant of the bagging technique 

in the ensemble methods.  RF uses decision tree 

combinations, so each tree depends on random values from 

independent samples with uniform distribution.  RF selects 

random features to partition each node to achieve high 

precision [33].  Additionally, the Extra Tree algorithm is 

founded on decision trees and ensembles of random forests. 

Extra Trees Classifiers, such as arbitrary Forest, make 

arbitrary decisions and randomize particular subsets of data 

to reduce overfitting and overlearning [44] [45]. Changeable 

parameters include the number of trees, features, and 

minimum size per split [44]. 

The ensemble ML method combines all the ML methods 

as training methods. It will get the best classifier by using 

each classifier and training each model on a different dataset 

sample. The prediction is made as majority voting using hard 

voting or weighted threshold majority voting for soft voting 

[46].  The ensemble voting will get the best parameters and 

advantages from all the ML methods so that the final voted 

method is returned and chosen as the final classifier [24].  
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The ensemble method is added as the new method to get the 

best classifier compared to the other methods. 

B.  MACHINE LEARNING EVALUATION 

Three primary classification system processes exist: learning, 

validation, and evaluation.  As shown in Table II below, a 

confusion matrix can be used to evaluate the system's 

performance and accuracy in classifying the dataset's 

sentiment.  The confusion matrix depicts the performance of 

a classification system in terms of true positives, true 

negatives, false positives, and false negatives in order to 

calculate precision, recall, accuracy, and F1 score.  In 

addition to the confusion matrix, the Area Under Curve 

(AUC) and the Receiver Operating Curve (ROC) can be used 

to determine the classification accuracy based on the true 

positive rate and false positive rate [47]. 
TABLE II.  CONFUSION MATRIX 

 Predicted 

Negative Positive 

Real Negative True 

Negative  

False 

Negative  

Positive False 

Positive  

True 

Positive  

From the confusion matrix in Table II, additional calculations 

can be done to get the level of accuracy (accuracy) and f-

measure in formulas (10) and (11). 

Accuracy = (TN + TP) / (TN + FP + FN + TP)             (10) 

F1 Score = 2 * TP / (TP + FP + FN)                             (11) 

III. RESEARCH METHODOLOGY 

The methodology proposed and carried out in this research 

is as follows (see also Figure 2):  

1. Using and processing the SpamID-Pair dataset 

2. Data exploration (profiling)  

3. Pre-processing and data cleaning 

4. Removing stop words 

5. Normalization process 

6. Implementing the spam comment detection 

algorithms according to Table IVA.  

7. Experiment and evaluation based on the scenario 

in Table IVB.  

8. Analysis, discussion, and conclusion stages. 

Our research methodology is explained in more detail in the 

following sections. 

A. SPAMID-PAIR DATASET 

In this experiment, we used the SpamID-Pair dataset [48]. 

This dataset consisted of pairs of posts and comments from 

social media in Indonesian. The dataset contained 72874 data 

with spam or non-spam labels. Details of information on this 

dataset can be seen in Table III. 

The characteristics of the SpamID-Pair dataset were: it 

consisted of repeated letters and symbols, included Unicode 

symbols, included emojis, contained non-standard/different 

abbreviations, had a lot of misspelled words, contained 

custom symbols, and contained code-mixing languages 

(Indonesian mixed with other languages). 
TABLE III.  SPAMID-PAIR DATASET PROFILE 

IGID Number of 

followers (millions) Non-spam Spam 

1918078581 54.3  4565 2251 

522969993 47.4  5712 1108 

225064794 42.4  3397 691 
24239929 36.4  818 1065 

2993265 34.1  4528 2022 

361869464 33.6  4658 1945 
26444210 33.4  6854 2466 

1948416 30.7  4944 1804 

8115577 27.1  65 38 
5735890 25.8  5045 1557 

4934196 25.2  4818 1971 

30585021 15.7  5537 911 

  2896 1208 

Data contains emoji/not. Total Percentage 

Only text 22710 31,16 

Contains Emoji 50164 68,84 

Data is spam/not Total Percentage 

Non-spam 53837 73.88 

Spam 19037 26.12 

 

FIGURE 2. Flowchart Of The Research Methodology 

B. DATA EXPLORATION AND PRE-PROCESSING 
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Initial processing was carried out at this stage to explore, 

clean, and prepare the dataset for classification. Some pre-

processing steps were:  

a) Removing rows with NA/null.  

b) Case folding: This process converted all the 

alphanumeric characters into lowercase characters. 

c) Tokenization: This process split all sentences into 

words by using delimiter whitespaces. This 

tokenization scenario was carried out in 2 forms, 

1-gram and 2-gram. 

d) Text normalization: Text normalization converted 

all the tokens into “normal” tokens. The sklearn 

library handled this process.  The SpamID-Pair 

dataset already provided data that was already 

normalized and also in raw format. 

e) Stopwords elimination: This process eliminated all 

the stopwords from the Indonesian stopword list. 

In this pre-processing step, we used Python libraries, such as 

Pandas and OpenPyXl for dataset manipulation, Matplotlib, 

and Seaborn for graphic and chart visualization, Tqdm for 

progress bar, and Sklearn as well as NLTK for text 

manipulation. 

C. IMPLEMENTATION OF ML ALGORITHMS AND 
EVALUATION METRICS 

Table IIIA shows the hardware and software utilized in this 

research. Due to limited resources, we made use of online 

machines in the cloud provided by AWS and offline on-

premise machines. In accordance with [10] and two 

ensemble voting methods (soft and hard), various machine 

learning classification techniques were applied to process 

spam detection in this stage. Hard and soft ensemble methods 

took advantage of 14 ML methods and used the majority 

voting for the hard and weighted voting for the soft voting. 

All of the machine learning algorithms we used can be seen 

in Table IIIB. Table IIIB also displays the hyper-parameters 

(changed from the default or addition parameters) of the 

Scikit-learn library. The evaluations used in the case of spam 

comment detection were accuracy and F1-score. The reason 

we used F1-score was that the SpamID-Pair dataset was 

unbalanced, so using only accuracy was insufficient. 

We used some Python libraries in this step, such as Scikit-

learn, Pickle, and Matplotlib. Scikit-learn was employed to 

create TFIDF features in 1-gram, and 2-gram tokens, split the 

dataset into testing and training, implement the ML methods, 

and evaluate the classification result performance metrics. 

We used Pickle to save the trained model and load it again 

for testing. 

We made use of four computers for the experiment, two 

were in the AWS cloud using SageMaker Studio Lab, and 

two were local computers using a Core i5 processor, 16 GB 

RAM, and 6 GB Nvidia RTX GPU. All code was generated 

in Jupyter Notebook. The TF-IDF feature was built from the 

SpamID-Pair text dataset with a maximum of 15000 features. 

All models were also saved so they could be reused for other 

implementations. Training duration varied from seconds, 

hours, to one day for each training method. 
TABLE IVA.  DEVICES SPECIFICATION AND FEATURES USED FOR THE 

EXPERIMENT 

Information Value 

Hardware on-premise 

Processor Core i5 

RAM 16 GB 

GPU Nvidia RTX 6 GB 

Standard cloud tool (Amazone SageMaker Studio Lab) 

https://studiolab.sagemaker.aws  

Features TF-IDF weighted vector with max 
feature=15000, sub_linear=True 

N-gram 1,2 grams 

Balanced Sklearn.SMOTETomek 
Pre-processing Tokenization, stopwords, normalization, 

stemming 

Dataset 80% (70% (training) +10% (validation)) dan 

20% (testing) 

K-Fold: 10 

Evaluation matrix Confusion matrix (accuracy and F1 score) 

 
TABLE IVB.  TESTING PARAMETERS OF ML ALGORITHMS USED IN THE 

EXPERIMENT 

ML Method Parameter Value 

Naïve Bayes Multinomial 

(NB) 

alpha 1.1 

Bernoulli Naïve Bayes (BNB) 

alpha 

binarize 

1.1 

0.51 

Complement NB alpha 1.1 

SVM Linear (SVML) 

random_state 

dual 

penalty 
tol 

42 

False 

l2 
0,0001 

SVM RBF (SVMRBF) 

kernel 

probability 
c 

gamma 

probability 

RBF 

True 
1.0 

Scale 

True 

KNN7 (k=7) 

n_neighbors 

weights 

metrics 

7 

distance 

euclidean 

AdaBoost (AB) 

n_estimators 

random_state 

1000 

42 

Decision Tree (DT) 

criterion 
min_samples_split 

class_weight 

Entropy 
3 

{0:0.7} 

Random Forest (RF) 

random_state 
warm_start 

class_weight 

42 
true 

{0,0.7} 

Logistics Regression (LR) 

multi_class 
solver 

max_iter 

random_state 

ovr 
saga 

1000 

42 

Xtreme Gradient Boosting 

(XGB) 

objective 

random_state 

binary-

logistic 

42 

Stochastics Gradient Descent 
(SGD) 

max_iter 

tol 

alpha 
verbose 

1000 

0.0001 

0.0001 
0 

Extra Tree (ET) 

n_estimators 

random_state 
criterion 

min_samples_split 

class_weight 

200 

42 
entropy 

3 

{0:0.7} 

Multilayer Perceptron (MLP) 

random_state 

max_iter 

verbose 

42 

300 

False 
Ensemble Voting from 14 voting hard and 
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SotA methods (EV-H, EV-S) soft 

IV. RESULTS AND DISCUSSION 

Based on the methodology described in the previous section, 

this study involved experiments on nine main topics, namely 

the effect of comment-only data without the emoji feature, 

the effect of post-comment pairs without the emoji feature, 

the effect of using emojis on comment-only data, the effect 

of using emojis on post-comment pairs, a comparison of 

performance against the usage of emojis on comment-only 

data and post-comment pairs, comparison of the performance 

of using emoji-text and emoji-symbols on comment-only 

data and post-comment pairs. The last part compared the 

stacked pair post-comment approach and the concatenated 

post-comment approach, manual features, and balanced 

scenario effect. The detailed discussion is presented below. 

A. DATA NORMALIZATION, EMOJI HANDLING, AND 
THE USE OF MANUAL FEATURES 

The normalization process was carried out after tokenization, 

as written in section III.B. The program was written in 

Python Jupyter Notebook and executed against the SpamID-

Pair dataset. The Kamus Besar Bahasa Indonesia (the official 

dictionary of the Indonesian language) data consisted of 

71798 word-class data (verb verbs, nouns, and adjective 

adjectives). In contrast, the dictionary data for 

abbreviations/acronyms/slang words was 1791 word pairs. 

The normalization process changed tokens that did not match 

the standard Indonesian spelling. The normalization method 

performed the following steps: 

1. All tokens were matched with words in the 

dictionary. If it was not found in the dictionary, 

then the matching process was carried out with the 

abbreviation and slang word dictionary. If it was 

located in the dictionary of abbreviations, 

acronyms, and slang terms, the token was replaced 

with the appropriate token based on the dictionary.  

2. All other tokens that were not found anywhere 

were left unchanged. 

3. We removed punctuation in a list of "!$%&\+-

<=>[\\]`{|}~" because it is related to emoji 

expressions. 

4. We removed double letters in words such as 

“sayaaaa!!”, “cobaa…”, etc.). 

5. We also converted some parts into special tagging 

with an UPPERCASE letter, such as URL pattern 

into HTTPURL tag, email pattern into EMAIL tag, 

user mentions into @USER tag, number pattern 

into ANGKA, and hashtag pattern into 

#HASHTAG tag. 

For the emoji handling, we sent the processed tokens to the 

Demoji Python library and used the demojize() function that 

listed all converted emoji symbols to emoji text descriptions 

in plain English as the state in the standard UTF emoji table. 

We also made the scenario for the data without emojis with 

the Demoji library and removed all emojis returned by the 

get_emoji_regexp() function. Some examples of 

normalization and emoji text conversion can be seen in Table 

V. 
TABLE V.  NORMALIZATION AND EMOJI TEXT CONVERSION EXAMPLES 

Original Text Converted Text 

KELUARIN SEMUA AGNEZ              

POST!!!! 

keluarin semua agnez 
crying_face 

smiling_face_with_heart-

eyes post 
 

Slmt siqng bini gw,yuk mkn siang,aku 

suapin pake rendang mauu?? 

selamat siqng bini gua 

yuk makan siang aku 
suapin pakai rendang mau 

 

                                                                    smiling_face_with_heart-
eyes 

smiling_face_with_heart-

eyes 

smiling_face_with_heart-

eyes clapping_hands 

clapping_hands 
clapping_hands 

Woooww            . . Seediaf0llowerss 

guyss            

woooww 

smiling_face_with_heart-
eyes fire  seediaf0llowerss 

guys fire fire 

 

TF-IDF features are generated as follows: if the scenario 

is the comment only, we create TFIDF using the 

TfidfVectorizer from comment data and set max_features to 

15000.  If the scenario is post-comment, we create TFIDF 

from the post, TFIDF from the comment, and then stack 

horizontally.  After that, we split TFIDF vector results into 

train and test data.  These created vectors were X_train and 

y_train, X_val and y_val, X_test and y_test. 

For the manual features, we used the lengths of the 

comments, lengths of both posts and comments, numbers of 

emojis in both posts and comments, numbers of unique 

emojis in both posts and comments, numbers of occurrences 

in both posts and comments, numbers of mention tags in both 

posts and comments, numbers of the hashtags in both posts 

and comments, numbers of capital letters in both posts and 

comments, numbers of link formats in both posts and 

comments, and, lastly, numbers of special characters in both 

posts and comments. To merge with the TF-IDF feature, we 

used scipy.sparse vector csr_matrix and created the 

horizontal stack of TFIDF features and all the additional 

manual features. We also applied a min_max scaling to these 

manual features before passing it to the classification 

method. We used the algorithm in data normalization, emoji 

handle, TFIDF generation, manual features, and the scenarios 

described in Algorithm 1. 

We implemented 14 state-of-the-art models for the 

ensemble methods as the input with all the parameters in 

Table IVB.  After the models were created and initialized, the 

VotingClassifier was also initialized with parameters, hard 

and soft.  The voting classifier used majority voting models 

in the decision phase.  The voting model was the biggest 

among the other models.  After the voting model was 
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created, it continued to the training-and-predicting stage.  

The algorithm can be seen in Algorithm 2. 

Algorithm 1 Generate Features Method (TF-IDF, Emoji, 

balanced/non, and additional features) 
Require: Dataset in XLSX format 

Ensure: TF-IDF vectors 

1: Procedure GENERATEFEATURES(dataset) 

2: df  read_excel pandas(data) 
3: df [”comment”].replace(”, NAN, inplace  True) 

4: kategori  d f [”label”] 

5: result  pre_ processing(df [”comment”]) 
6: teks  result 

7: hasil  list() 

8: for word in teks.split() do 

9: is-emoji bool(emoji.get emoji regexp().search(word)) 

10: if is_emoji == False And is_ascii(word) then 

11: ketemu,  pos1 cekKamus(kamus, word) 
12: if ketemu == False then 

13: h correction(word) 

14: word h 
15: end if 

16: word  cekKamusSingkatan(kamussingkatan,word) 
17: word re.sub(’+. ’,’ANGKA’,word) 

18: if word.islower() then 

19: output stemmer.stem(word) 

20: else 

21: output word 

22: end if 

23: if output not in stopwords then 

24: hasil.append(output) 

25: end if 

26: else 

27: hasil.append(word) 

28: end if 

29: end for 

30: baru ’ ’.join(hasil) 

31:          hasil_akhir  emoji.demojize(str(baru),delimiters=(’ ’,’ ’)) 
32: hasil_akhir  ’ ’.join(hasil akhir.split()) 

33: X   hasil_akhir  

34: y   kategori  
35: X_ train, X_ test,y_train,y_test  train_test_split(X, y, test-size 

 0.20, random-state  42) 

36: Train_Y  y_train; Test_Y  y_test 

37: P  X-train 

38: P [′add_features_train′]  X_train[′add_feaatures′] 
39: koloms1  [′add_f eatures_train′] 

40: P  min_max_scaling(P , koloms1) 

41: add_f eatures1  P [′add_f eatures_train′] 

42: Train_X_ transformed  add_ feature(T rain_X_ Tfidf , [add 

features1]) 

43: P  X_test 

44: P [′add_f eatures′]  X_train[′add_f eatures′] 
45: koloms2  [′add_f eatures_test′] 

46: P  min_max_scaling(P , koloms2) 

47: kf  KFold(n_splits10, shuffle  True,random_state 42) 

48: scorings  [’accuracy’, ’f1’] 

49: Train_X_ bal, Train_y_bal  smotetomek.fit resample(Train 

X_ transformed, Train_Y ) 

50: Test_X_ bal, Test_ y_bal  smotetomek.fit_resample(Test_ X 
transformed, Test- Y) 

51: Train_ X_ Features  [T rain_X_ bal or 

Train_X_ transformed] 
53: Test_ X_ Features  [T est_X bal or Test_X_transformed] 

54: Return: Train_X_ Features, Test_X_ Features, Train_Y , 

Test-Y 
55: End Procedure 

 

Algorithm 2 Ensemble Method Training and Testing) 
Require: 14-ML models 

Ensure: Hard and Soft Voting 

1:  Procedure ENSEMBLELEARNING(MLModels) 

2:  list_of_models[]  getModels(NBModel, BNBModel,  

CNBModel, SVMCModel, SVMRBFModel, KNN7Model, 
ABModel, DTModel, RFModel, LRModel, XGBModel, 

SGDModel, ETModel, MLPModel, VotingClassifier) 

3:  hard_voting  
VotingClassifier(estimator  list_of_models, 

voting  ’hard’)  

4:  soft_voting  
VotingClassifier(estimator  list_of_models, 

voting  ’soft’)  

5:     hard_model 
list_of_models[’hard_voting’] 

6:  hard_model.fit(T rain-X- bal, Train-Y-bal) 

7:  soft_model  list_of_models[’soft_ voting’] 
8:   soft_model.fit(T rain-X- bal, Train-Y-bal) 

9:  predictions-hard  hard-model.predict(Test-X-bal) 

10:  predictions-soft  soft-model.predict(Test-X-bal) 
11:  Return predictions-hard, prediction-soft 

    12: End procedure 

B. THE EXPERIMENT RESULTS 

The experiment results of spam comment detection using 

Machine Learning methods with various scenarios can be 

seen in Tables VIA and VIB. Table VIA shows that there 

were 14 ML methods used for testing spam comment data 

with multiple abbreviations. As shown in Table VIB, the 

scenarios were: using the TFIDF feature with 1-gram and 2-

gram, comment-only data or posts and comment-combined 

data, non-emoji or emoji feature in Unicode symbols or text-

converted emoji. Emoji conversion was done by changing 

the emoji symbols into the emoji descriptions according to 

the Unicode Table using the Demoji library. The emoji 

descriptions still used English text and a description separator 

in the form of an underscore character.  In each result table, 

the highest values are written in bold, and the lowest ones are 

written in bold italics.  
TABLE VIA.  MACHINE LEARNING ABBREVIATION AND ITS DESCRIPTION 

USED IN THE EXPERIMENT 

No. Abbreviation Name Description 

1 NB Multinomial Naïve Bayes 

2 BNB Bernoulli Naïve Bayes 

3 CNB Complement Naïve Bayes 
4 SVML SVM Linear 

5 SVMRBF SVM Radial Basis Function 

6 KNN7 KNN with k = 3 
7 AB Ada Boost 

8 DT Decision Tree 

9 RF Random Forest 
10 LR Logistics Regression 

11 XGB eXtreme Gradient Boosting Tree 

12 SGD Stochastic Gradient Descent 
13 ET Extreme Tree 

14 MLP Multi-Layer Perceptron 

15 EH Ensemble Hard Voting 
16 ES Ensemble Soft Voting 

 
TABLE VIB.  TESTING SCENARIO ABBREVIATION AND MANUAL FEATURES 

Scenario Description  Scenario  Description  

1CT Features: token 1 gram, 

TFIDF, comment only,  
emoji text, pre-

processing 

1PCT Features: token 1 

gram, TFIDF, post-
comment only,  

emoji text, pre-

processing 
2CT Features: token 2 gram, 

TFIDF, comment only, 

2PCT Features: token 2 

gram, TFIDF, post-
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emoji text, pre-

processing 

comment only,  

emoji text, pre-

processing 
1CS Features: token 1 gram, 

TFIDF, comment-only 

emoji symbol, pre-
processing 

1PCS Features: token 1 

gram, TFIDF, post-

comment only,  
emoji symbol, pre-

processing 

2CS Features: token 2 gram, 
TFIDF, comment-only 

emoji symbol, pre-

processing 

2PCS Features: token 2 
gram, TFIDF, post-

comment only,  

emoji symbol, pre-
processing 

1CTB Features: token 1 gram, 

TFIDF, comment only,  
emoji text, pre-

processing, balanced 

1PCTB Features: token 1 

gram, TFIDF, post-
comment,  emoji 

text, pre-processing, 

balanced 
2CTB Features: token 2 gram, 

TFIDF, comment only,  

emoji text, pre-
processing, balanced 

2PCTB Features: token 2 

gram, TFIDF, post-

comment,  emoji 
text, pre-processing, 

balanced 

1CSB Features: token 1 gram, 
TFIDF, comment only,  

emoji symbol, pre-
processing, balanced 

1PCSB Features: token 1 
gram, TFIDF, post-

comment,  emoji 
symbol, pre-

processing, 

balanced 
2CSB Features: token 2 gram, 

TFIDF, comment only,  

emoji symbol, pre-
processing, balanced 

2PCSB Features: token 2 

gram, TFIDF, post-

comment,  emoji 
symbol, pre-

processing, 

balanced 
1CTM Features: token 1 gram, 

TFIDF, comment only,  

emoji text, pre-

processing, add manual 

features 

1PCTM Features: token 1 

gram, TFIDF, post-

comment,  emoji 

text, pre-processing, 

add manual features 

2CTM Feature 2 gram, 
comment text, emoji 

text, pre-processing, 

TFIDF, add manual 
features 

2PCTM Feature 2 gram, 
post-comment text, 

emoji text, pre-

processing, TFIDF, 
add manual features 

1CSM Feature 1 gram, 

comment text, emoji 
symbol, pre-processing, 

TFIDF, add manual 

features 

1PCSM Feature 1 gram, 

post-comment text, 
emoji symbol, pre-

processing, TFIDF, 

add manual features 
2CSM Feature 2 gram, 

comment text, emoji 

symbol, pre-processing, 
TFIDF, add manual 

features 

2PCSM Feature 2 gram, 

post-comment text, 

emoji symbol, pre-
processing, TFIDF, 

add manual features 

1CTMB Feature 1 gram, 

comment text, emoji 

text, pre-processing, 

TFIDF, add manual 
features, balanced 

1PCTMB Feature 1 gram, 

post-comment, 

emoji text, pre-

processing, TFIDF, 
add manual 

features, balanced 

2CTMB Feature 2 gram, 
comment text, emoji 

text, pre-processing, 

TFIDF, add manual 
features, balanced 

2PCTMB Feature 2 gram, 
post-comment text, 

emoji text, pre-

processing, TFIDF, 
add manual 

features, balanced 

1CSMB Feature 1 gram, 
comment text, emoji 

symbol, pre-processing, 

TFIDF, add manual 
features, balanced 

1PCSMB Feature 1 gram, 
post-comment, 

emoji symbol, pre-

processing, TFIDF, 
add manual 

features, balanced 

2CSMB Feature 2 gram, 

comment text, emoji 
symbol, pre-processing, 

TFIDF, add manual 

features, balanced 

2PCSMB Feature 2 gram, 

post-comment text, 
emoji symbol, pre-

processing, TFIDF, 

add manual 
features, balanced 

Manual 

Features: 

length of the comment, length of both post and comment, 

number of emoji in both post and comment, number of unique 
emoji in both post and comment, number of number 

occurrences in both post and comment, number of mention 

tags in both post and comment, number of the hashtag in both 
post and comment, number of capital letters in both post and 

comment, number of link format in both post and comment, 

and the last, number of special characters in both post and 
comment 

 

1) SPAM DETECTION PERFORMANCE ON COMMENT 
DATA WITHOUT EMOJIS 

Table VII displays the accuracy of the comment data only 

without using the emoji feature average (all the experiments 

use k-fold validation with k=10). The SVM-RBF kernel 

method produced the highest accuracy at 84%, while DT had 

the lowest accuracy at 63% in the 2CTMB scenario. The 

average accuracy across all scenarios was 78.46%. The CNB 

method was not executed when the scenario was a balanced 

dataset (which was generated using Sklearn.SMOTETomek 

library) because CNB is used in an unbalanced dataset.  In all 

the tables, the cell is written as 'NA.' For example, it is 

written in Table VII for the 1CTB, 2CTB, 1CTMB, and 

2CTMB scenarios. The best performance based on the 

scenario was 1CTB and 1CTMB using SVM-RBF, which 

achieved a score of 84%, followed by the SVM-Linear in the 

1CTB scenario.  Table VII also shows that SVMRBF seemed 

superior to the others, but Ensemble Soft Voting had the 

highest average accuracy of 82.375% compared to all other 

methods. 
TABLE VII.  THE AVERAGE ACCURACY OF COMMENT-ONLY DATA 

WITHOUT EMOJIS (IN PERCENT) 

Accuracy NB BNB CNB SVML RBF KNN7 AB 

1CT 79 73 79 79 82 73 74 

2CT 79 72 78 78 81 74 74 
1CTB 75 78 NA 82 84 74 72 

2CTB 74 76 NA 82 83 74 72 

1CTM 79 73 81 79 82 73 76 
2CTM 79 72 80 79 81 74 76 

1CTMB 80 78 NA 82 84 74 71 

2CTMB 80 76 NA 82 84 74 71 

AVG 78,13 74,75 79,50 80,38 82,63 73,75 73,25 

 
Accuracy DT RF LR XGB SGD ET MLP EH ES 

1CT 78 80 79 76 79 80 80 80 82 

2CT 78 80 79 76 79 80 79 79 81 
1CTB 81 81 82 77 82 82 82 83 83 

2CTB 80 82 82 77 82 82 81 83 83 

1CTM 73 79 79 78 80 80 80 82 82 
2CTM 70 78 79 79 79 79 80 81 82 

1CTMB 65 74 82 72 82 81 79 83 83 

2CTMB 63 72 82 72 83 80 79 83 83 

AVG 74 78 81 76 81 81 80 82 82 

 
Table VIII displays the average F1 scores from the 

comment data without using the emoji feature. The SVM-
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RBF method yielded the highest F1 score with the CTMB 

scenario.  In contrast, DT earned the lowest F1 score. The 

average F1 score was 76.40%. The F1 score was also good 

because it was closer to accuracy.  Based on the accuracy and 

F1 score, we can see that the best strategy for comment-only 

data was using the comment-text balanced and adding the 

manual features.  The soft ensemble voting also had the 

highest average F1 score at 81% among all the other 

methods. 
TABLE VIII.  THE AVERAGE F1 SCORE OF COMMENT-ONLY DATA 

WITHOUT EMOJIS (IN PERCENT) 

F1 

Score NB BNB CNB SVML RBF KNN7 AB 
1CT 73 64 75 75 79 72 67 
2CT 73 63 75 74 79 72 67 
1CTB 75 78 NA 82 84 74 70 
2CTB 74 76 NA 82 83 74 71 
1CTM 73 64 79 75 79 71 71 
2CTM 74 63 78 75 79 73 72 
1CTMB 80 78 NA 82 84 73 70 
2CTMB 80 76 NA 82 84 74 70 
Avg 75,25 70,25 76,75 78,38 81,38 72,88 69,75 

 

F1 

Score DT RF LR XGB SGD ET MLP EH ES 
1CT 76 78 75 69 75 79 78 76 79 
2CT 76 78 74 69 75 78 78 75 79 
1CTB 81 81 82 76 82 82 82 83 83 
2CTB 80 82 82 76 82 82 81 83 83 
1CTM 71 76 75 74 76 78 78 78 79 
2CTM 69 76 75 74 76 77 77 78 79 
1CTMB 63 73 82 70 82 81 79 83 83 
2CTMB 59 71 82 71 83 80 79 83 83 

AVG 72 77 78 72 79 80 79 80 81 

 

2) SPAM DETECTION PERFORMANCE ON POST-
COMMENT PAIRS DATA WITHOUT EMOJIS 

In this section, we evaluate the performance of spam 

comment detection using the post-comment pairs approach 

without emojis. All the emojis had been removed from this 

data. It contained only text data and was converted to TFIDF 

post-and-comment pairs stacked horizontally. Table IX 

displays the average accuracy of post-comment pair data 

without the emoji feature. The SVM-RBF methods produced 

the highest accuracy value at 86% using the SVM-RBF 

kernel in the 1PCTMB and 2PCTMB scenario, while DT got 

the lowest accuracy at 54% in 1PCTMB and 2PCTMB. The 

average accuracy value was 78.44%. The horizontally 

stacked TFIDF vectors of posts and comments differed only 

0.02% from the average accuracy of comment-only data 

without emojis. Based on the ensemble methods, ES in post-

comment pairs had higher accuracy than in comment-only 

data without emojis. ES ensemble also had the highest 

average accuracy among the other methods at 83.375%. 
TABLE IX.  THE AVERAGE ACCURACY OF POST-COMMENT PAIRS 

WITHOUT EMOJIS (IN PERCENT) 

Accuracy NB BNB CNB SVML RBF KNN7 AB 
1PCT 80 72 80 82 83 70 75 
2PCT 80 72 79 81 83 68 74 
1PCTB 78 76 NA 82 85 63 71 
2PCTB 78 74 NA 82 85 62 72 
1PCTM 79 75 80 82 83 72 77 

2PCTM 79 73 80 82 83 69 77 
1PCTMB 80 77 NA 83 86 64 71 
2PCTMB 79 75 NA 83 86 61 71 
AVG 79,13 74,25 79,75 82,13 84,25 66,13 73,50 

 
Accuracy DT RF LR XGB SGD ET MLP EH ES 
1PCT 74 75 82 77 81 78 80 82 82 
2PCT 73 75 81 77 81 77 80 82 82 
1PCTB 77 80 82 78 82 80 81 83 84 
2PCTB 76 76 82 79 82 80 82 83 83 
1PCTM 74 81 83 78 81 81 80 83 84 
2PCTM 73 80 82 79 82 81 80 83 84 
1PCTMB 54 80 83 73 83 83 82 84 84 
2PCTMB 54 78 83 73 83 82 82 84 84 

AVG 69 78 82 77 82 80 81 83 83 

 

Table X shows the average F1 score from post-comment 

pairs data without emojis. The SVM-RBF method yielded 

the highest F1 score value. The average F1 score value 

reached 76.46%, an increase of +0.07% compared to the F1 

score of comment-only data. The average value of the F1 

score had the highest increment compared to its accuracy. 

This result indicates that post-comment can be horizontally 

stacked as pairs of data to improve spam detection 

performance. However, the average performance score of F1 

Score without Emoji of post-and-comment pairs also 

indicates that it can and needs to be improved using the emoji 

feature and other scenarios. Based on the results of the study, 

it can be seen that the worst method was DT which reached 

the lowest value of 46%, followed by KNN and BNB. 

Ensemble ES got an F1 score which was higher than EH. 
TABLE X.  THE AVERAGE F1 SCORE OF POST– COMMENT PAIRS WITHOUT 

EMOJIS (IN PERCENT) 

F1 Score NB BNB CNB SVML RBF KNN7 AB 
1PCT 75 62 77 79 80 69 68 
2PCT 75 62 77 79 80 68 68 
1PCTB 78 76 NA 82 85 58 71 
2PCTB 78 74 NA 82 85 57 72 
1PCTM 74 70 78 80 80 70 72 
2PCTM 75 63 78 80 80 68 72 
1PCTMB 80 77 NA 83 86 60 70 
2PCTMB 79 75 NA 83 86 57 70 
AVG 76,75 69,88 77,50 81,00 82,75 63,38 70,38 

 

F1 Score DT RF LR XGB SGD ET MLP EH ES 
1PCT 73 74 79 71 78 76 77 79 80 
2PCT 72 74 78 71 79 76 78 79 79 
1PCTB 77 80 82 78 82 80 81 83 84 
2PCTB 76 76 82 79 82 80 82 83 83 
1PCTM 71 78 80 74 78 79 78 80 81 
2PCTM 71 77 79 76 80 79 78 80 81 
1PCTMB 46 80 83 72 83 83 82 84 84 
2PCTMB 46 78 83 72 83 82 82 84 84 

AVG 67 77 81 74 81 79 80 82 82 

 

3) DETECTION PERFORMANCE ON COMMENT DATA 
WITH EMOJIS 

In this section, we explore the detection performance on the 

comment-only data with emoji. We wanted to know how 

emojis can affect the performance of comment-only data. 

Based on the data in Table XI, it was found that the average 

accuracy of the comment-only data using the emoji feature 
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was 79.82%. The SVM-RBF method yielded the highest 

accuracy values, which reached 88% (the highest until now) 

in 1CTMB scenarios.  The DT method had the lowest 

accuracy at 51% in the 1CSMB scenario. It can also be seen 

that the emojis converted into the text format (emoji-text) 

had a higher value than the original emoji symbols in UTF-8 

encoding (emoji-symbols). Interestingly, the performance of 

1-gram and 2-gram token features with balanced data was the 

same as with non-balanced data. The ES method also 

performed better than EH in terms of accuracy, except in the 

CSMB scenario. 
TABLE XI.  THE AVERAGE ACCURACY OF COMMENT-ONLY DATA WITH 

EMOJIS (IN PERCENT) 

Accuracy NB BNB CNB SVML RBF KNN7 AB 
1CT 83 78 83 87 87 77 81 
2CT 83 78 82 86 87 77 81 
1CS 82 82 83 83 84 81 80 
2CS 81 81 83 83 83 80 80 
1CTB 79 80 NA 84 87 79 82 
2CTB 78 76 NA 84 86 78 81 
1CSB 73 65 NA 72 72 70 67 
2CSB 73 64 NA 68 72 70 68 
1CTM 83 78 85 87 87 77 83 
2CTM 83 78 84 86 87 76 81 
1CSM 81 79 85 83 84 77 79 
2CSM 79 78 79 83 76 79 80 
1CTMB 82 80 NA 86 88 79 77 
2CTMB 82 76 NA 85 87 78 76 
1CSMB 78 65 NA 72 76 77 60 
2CSMB 78 64 NA 71 76 69 72 
AVG 79,9 75,1 83,0 81,3 82,4 76,5 76,8 

 

Accuracy DT RF LR XGB SGD ET MLP EH ES 
1CT 83 86 86 83 86 86 86 87 87 
2CT 83 86 86 83 86 86 85 87 87 
1CS 81 83 83 81 83 83 82 84 84 
2CS 80 82 83 81 83 82 82 83 83 
1CTB 83 86 85 84 83 86 85 86 86 
2CTB 83 85 85 83 85 85 85 86 86 
1CSB 73 75 72 71 72 76 75 74 76 
2CSB 73 74 72 71 72 75 74 74 75 

1CTM 79 86 87 85 87 87 86 87 87 

2CTM 78 86 86 84 86 86 85 87 87 
1CSM 70 80 83 82 83 78 84 84 85 

2CSM 79 84 78 84 76 84 84 84 84 

1CTMB 67 79 86 71 86 87 83 86 86 
2CTMB 67 75 86 72 86 82 83 86 85 

1CSMB 51 57 75 51 75 67 79 81 67 

2CSMB 55 64 75 56 74 66 79 81 72 

AVG 74 79 82 76 81 81 82 84 82 

 

Based on the information in Table XII, it was found that 

the average F1 score from comment-only data using the 

emoji feature was 75.33%. The SVM-RBF method also 

yielded the highest F1-score value. In the case of balanced 

emoji symbols, the DT methods had decreased performance 

significantly compared to text emojis until it reached 37%. 

Ensemble soft voting also performed the best on average 

compared to the other methods. 
TABLE XII.  THE AVERAGE F1 SCORE OF COMMENT-ONLY DATA WITH 

EMOJIS (IN PERCENT) 

F1 Score NB BNB CNB SVML RBF KNN7 AB 

1CT 74 65 79 82 82 74 70 
2CT 75 64 77 81 81 74 70 

1CS 69 69 76 74 75 68 69 

2CS 68 68 75 74 74 67 68 

1CTB 78 80 NA 84 87 79 82 
2CTB 78 76 NA 84 86 78 81 

1CSB 72 63 NA 71 70 70 65 

2CSB 72 62 NA 66 70 70 65 
1CTM 74 66 81 82 82 74 75 

2CTM 75 65 80 82 81 73 72 

1CSM 68 64 79 74 75 72 69 
2CSM 70 70 73 74 53 71 69 

1CTMB 82 80 NA 86 88 79 76 

2CTMB 82 76 NA 85 87 77 75 
1CSMB 77 63 NA 71 75 77 56 

2CSMB 78 62 NA 70 75 68 72 

AVG 74,5 68,3 77,5 77,5 77,6 73,2 70,9 

 
F1 
Score DT RF LR XGB SGD ET MLP EH ES 
1CT 78 81 81 73 82 81 81 82 82 
2CT 78 81 81 73 81 81 80 81 82 
1CS 73 75 74 70 74 75 75 74 75 
2CS 72 73 73 68 73 74 74 74 74 
1CTB 83 86 85 84 83 86 85 86 86 
2CTB 83 85 85 83 85 85 85 86 86 
1CSB 72 75 71 70 70 75 74 73 75 
2CSB 72 73 71 69 71 75 73 73 75 

1CTM 75 81 82 79 82 82 81 83 83 
2CTM 73 81 81 78 82 82 81 82 82 

1CSM 65 75 73 75 73 73 78 75 77 

2CSM 74 78 64 76 64 78 77 76 76 
1CTMB 64 78 86 69 86 87 83 86 86 

2CTMB 65 75 86 71 86 82 83 86 85 

1CSMB 37 49 75 37 74 65 79 81 65 
2CSMB 48 61 74 47 74 64 79 81 71 

AVG 70 75 78 70 78 78 79 80 79 

 

4) PERFORMANCE TESTING ON POST-COMMENT 
PAIRS DATA WITH EMOJIS 

After experimenting with comment-only data with emojis, 

we continued testing the performance on post-and-comment 

pairs with emojis. Table XIII displays that the average 

accuracy of post-comment pairs data using the emoji feature 

was 80.36%. The SVM-RBF method with a 1PCTMB 

scenario yielded the highest accuracy value at 90% (the best 

accuracy so far). Still the same with comment-only data with 

emojis, emoji text produced a better result than emoji 

symbols in UTF-8 encoding. Based on these results, the 

accuracy of the stacked post-comment pairs data with emojis 

was higher than the comment-only data with emojis, reaching 

only 79.81%.  It increased by 0.6%. This result was also 

better than the accuracy of post-comment pairs data with no 

emoji (only 78.42%), and the accuracy of comment-only data 

without emojis (78.49%). It increased by 1.94% and 1.87%. 

The DT method reached the worst accuracy with a 1CSMB 

scenario at 52%, and the ensemble ES was better than EH in 

the average accuracy at 84.875%.  The ensemble methods 

could not outperform the single classifier but always yielded 

the highest result in average accuracy among the others. 
TABLE XIII.  THE ACCURACY OF POST-COMMENT PAIRS DATA WITH 

EMOJIS (IN PERCENT) 

Accuracy NB BNB CNB SVML RBF KNN7 AB 
1PCT 83 79 84 87 88 80 81 
2PCT 83 83 83 87 87 78 82 
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1PCS 81 81 81 83 83 76 80 
2PCS 82 78 80 83 83 76 80 
1PCTB 81 80 NA 85 89 74 81 
2PCTB 81 76 NA 85 89 72 81 
1PCSB 73 68 NA 77 78 68 69 
2PCSB 74 66 NA 77 78 67 69 
1PCTM 83 78 84 87 88 80 83 
2PCTM 83 78 83 87 87 79 82 
1PCSM 82 78 81 84 84 77 77 
2PCSM 82 78 80 83 84 77 77 
1PCTMB 81 79 NA 86 90 75 76 
2PCTMB 81 76 NA 85 89 72 76 
1PCSMB 75 68 NA 77 78 67 57 
2PCSMB 74 66 NA 77 78 68 75 
AVG 79,9 75,8 82,0 83,1 84,6 74,1 76,6 

 
Accuracy DT RF LR XGB SGD ET MLP EH ES 
1CT 81 84 87 84 87 85 86 87 87 
2CT 82 83 87 84 87 84 85 87 87 
1CS 79 82 83 82 83 82 82 83 83 
2CS 79 82 83 82 83 82 82 83 83 
1CTB 81 84 85 86 85 85 85 87 88 
2CTB 82 84 85 85 85 84 85 86 87 
1CSB 76 80 77 77 77 80 80 79 80 
2CSB 76 79 77 77 77 80 79 79 80 
1CTM 81 85 87 85 87 86 84 87 88 

2CTM 79 85 87 85 87 86 86 87 88 
1CSM 73 83 84 83 84 83 83 84 85 

2CSM 73 83 84 82 84 83 83 84 85 

1CTMB 66 84 86 74 86 86 86 87 87 
2CTMB 69 83 85 71 86 85 85 86 87 

1CSMB 52 81 77 57 77 82 81 79 81 

2CSMB 54 82 77 70 77 82 81 80 82 

AVG 74 83 83 79 83 83 83 84 85 

 
Table XIV shows that the average F1 score from post-

comment data using the emoji feature was 75.86%. The 

SVM-RBF method still produced the highest F1-score value 

at 88% in all balanced emoji text scenarios. On the other 

hand, the DT method performed worst at just 52%. These 

results demonstrate an increase in F1-score compared to 

comment-only data with emojis but a very slight decrease in 

comment-only and post-comment pairs with emojis. This 

result means that the post-comment pairs approach and the 

emoji feature strongly influence the spam comment detection 

performance. We can see that the emoji feature had a higher 

impact than the post-comment pairs approach. Until this step, 

the converted emoji text was superior to the emoji symbols. 

As usual, the soft ensemble soft voting had the highest 

average F1 score among the other methods. 
TABLE XIV.  THE F1 SCORE OF POST-COMMENT PAIRS WITH EMOJI (IN 

PERCENT) 

F1 Score NB BNB CNB SVML RBF KNN7 AB 
1PCT 74 65 79 82 82 74 70 
2PCT 75 64 77 81 81 74 70 
1PCS 69 69 76 74 75 68 69 
2PCS 68 68 75 74 74 67 68 
1PCTB 78 80 NA 84 87 79 82 
2PCTB 78 76 NA 84 86 78 81 
1PCSB 72 63 NA 71 70 70 65 
2PCSB 72 62 NA 66 70 70 65 
1PCTM 74 66 81 82 82 74 75 
2PCTM 75 65 80 82 81 73 72 
1PCSM 68 64 79 74 75 72 69 
2PCSM 70 70 73 74 53 71 69 

1PCTMB 82 80 NA 86 88 79 76 
2PCTMB 82 76 NA 85 87 77 75 
1PCSMB 77 63 NA 71 75 77 56 
2PCSMB 78 62 NA 70 75 68 72 
AVG 74,5 68,3 77,5 77,5 77,6 73,2 70,9 

 
F1 

Score DT RF LR XGB SGD ET MLP EH ES 
1CT 78 81 81 73 82 81 81 82 82 
2CT 78 81 81 73 81 81 80 81 82 
1CS 73 75 74 70 74 75 75 74 75 
2CS 72 73 73 68 73 74 74 74 74 
1CTB 83 86 85 84 83 86 85 86 86 
2CTB 83 85 85 83 85 85 85 86 86 
1CSB 72 75 71 70 70 75 74 73 75 
2CSB 72 73 71 69 71 75 73 73 75 
1CTM 75 81 82 79 82 82 81 83 83 

2CTM 73 81 81 78 82 82 81 82 82 

1CSM 65 75 73 75 73 73 78 75 77 
2CSM 74 78 64 76 64 78 77 76 76 

1CTMB 64 78 86 69 86 87 83 86 86 

2CTMB 65 75 86 71 86 82 83 86 85 
1CSMB 37 49 75 37 74 65 79 81 65 

2CSMB 48 61 74 47 74 64 79 81 71 

AVG 70 75 78 70 78 78 79 80 79 

 

5) PERFORMANCE COMPARISON ON COMMENT DATA 
WITH AND WITHOUT EMOJI SCENARIO 

This section compares the detection performance between 

comment-only data with and without emojis. Figure 3 shows 

the increment of accuracy between comment-only data with 

and without emojis scenarios. Based on the results, it can be 

determined that the average increment in accuracy reached 

+5.97%, with the highest average improvement results 

obtained from the Ada Boost (AB) (+9.57%).  RF followed it 

with +6.86%. AB achieved the most considerable average 

improvement in accuracy of +13.89%.  In contrast, the XGB 

method obtained the lowest increment (decreasing to -

1.39%). Ensemble hard voting had a higher increment than 

soft voting on average accuracy. 

 

FIGURE 3. Accuracy Increment of Comments only with Emoji 
and without Emoji Scenario (in Percent) 

On the other hand, figure 4 shows the increment of the F1 

score between comments only with emojis and without 

emojis.  Based on this figure, it can be seen that the average 

increment in the F1 score reached +4.68%. The highest 
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average improvement results were obtained from the AB 

value at +7.69%. AB also received the best F1-score 

improvement with a +17.14% increment (1CTB). On the 

other hand, DT with a 1CTMB scenario got the worst 

increment with a decrement until -1.43%.  The EH method 

got a higher F1 score than ES.  The experiment result shows 

that the emoji features improved their average accuracy and 

F1-score in a range between +4.67% and +5.97%. Moreover, 

emoji usage improved spam comment detection 

performance, particularly in accuracy. 
 

 

FIGURE 4. F1-Score Comparison Between Comments with 
Emoji and Without Emoji (in Percent) 

6) PERFORMANCE COMPARISON ON POST-COMMENT 
PAIRS WITH AND WITHOUT EMOJI SCENARIO 

This section compares the detection performance between 

post-comment pairs with and without emojis.  Figure 5 

shows the increment of accuracy between post-comment data 

without emojis and with emojis scenarios. Based on the 

result, it can be determined that the average increment in 

accuracy reached +6.64%.  It was higher than the 

improvement of comment-only data in the previous result. 

Surprisingly, the highest average accuracy improvement 

results were obtained by DT with +27.78%, and the lowest 

average accuracy improvement was obtained by XGB (-

2.74%). The highest improvement method was DT; 

meanwhile, the lowest was XGB, both with 2PCTMB 

scenarios. The emoji feature on post-comment pairs data 

improved spam detection accuracy.  Ensemble soft voting 

performed better than hard voting in average accuracy 

increment. 

Figure 6 shows the F1-score increment of post-comment 

pairs data with emojis and without emojis scenarios. Based 

on this result, it can be seen that the average increment in F1-

score reached the value of +4.65%, with the most 

considerable improvement achieved by DT. The highest 

scenario was obtained by DT (on 2PCTMB), while BNB (on 

1PCTM scenario) received the lowest F1 score. The average 

accuracy increment was higher than the average F1 score 

increment. The ES method had a higher F1 score increment 

than EH. 

Figures 5 and 6 show that the accuracy and F1-score using 

the emoji feature in post-comment pairs data were higher 

than those without using the emoji feature.  The increment of 

the average F1 score was between +4.65% and +6.64%, 

higher than the increment of the comment-only data.  

Stacked post-comment pairs improved the performance 

compared to just using comment-only data. So, it can be 

stated that emojis and post-comment pairs are excellent 

combinations for improving spam detection performance. 

The methods with the most significant improvement due to 

the emoji feature were DT and AB.  XGB and AB typically 

had the lowest performance in the without-emoji-feature 

scenario, but using the emoji feature helped them improve 

their performance. 

 
FIGURE 5. Accuracy Increment of Post-Comment Pairs with 
Emoji and Without Emoji Scenario (in Percent) 

 

 
FIGURE 6. F1-Score Increment of Post-Comment Pairs with 
Emoji and Without Emoji Scenario (in Percent) 

7) PERFORMANCE COMPARISON BETWEEN EMOJI 
POST COMMENT PAIRS AND EMOJI COMMENTS ONLY 

Based on the previous section, the emoji feature improved 

spam detection performance. This section also shows the 
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performance increment of emojis in comments and post-

comment pairs scenarios.  Based on the results in Figure 7, 

the average accuracy increment between emoji features in 

post-comments according to the methods was +1.53% and 

+1.67% according to the scenarios.  The best methods that 

gained the most improvement were RF, ET, and ES. The 

KNN and DT experienced a decrease of -12.79% and -

7.59%, respectively.  KNN and DT based on the Tree 

algorithm could not perform well, even when using emoji 

features. 

   Interestingly, scenarios 1CSB, 2CSB, 1CSMB, and 

2CSMB produced the best results compared to those of other 

scenarios. Emoji symbols were found to produce a higher 

increase in the result than emoji text when compared with 

comment-only data and post-comment pairs. The emoji 

symbols yielded promising results in accuracy when 

combined with post-comment pairs data.  Ensemble with soft 

voting got a higher increment compared to hard voting. 

The average F1-score comparison between comments with 

emoji feature and post-comments with emoji feature was 

+1.90% according to methods and +2.08% according to 

scenarios, as shown in Figure 8. The F1 improvement was 

favorable because it was higher than the accuracy.  The 

algorithms that experienced the most significant 

improvement were RF and XGB. Unfortunately, the KNN7 

got the worst improvement.  RF had the most significant 

improvement in 1CPSMB and 2CPSMB.  Figure 8 also 

shows negative values, particularly in KNN and BNB. 

Based on comparative data on the effect of emojis on 

comments and post comments, it can be seen that the impact 

of emojis on comments or post-comments was quite good.  

Emojis improved spam comment detection performance 

compared to that was done without emoji features.  The post-

comment pair could still improve the performance using the 

horizontal stacked TF-IDF vectors approach. In general, the 

post-comment pair approach was also effective for all the 

emoji symbol scenarios that usually get a low result in the 

comment-only scenario.   

  

 
FIGURE 7. Accuracy Increment of Post-Comment Pairs and Comment Only (With Emoji) Scenario 
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FIGURE 8. F1 Score Comparison Between Comment Only Data and Post-Comment Pairs Data with Emoji (In Percent) 

8) PERFORMANCE COMPARISON BETWEEN EMOJI 
TEXT AND EMOJI SYMBOLS ON COMMENTS AND 
POST-COMMENT PAIRS 

In this section, we compare the effect of converted emojis in 

text and symbols to get the best performance. Based on 

Figure 9, emoji text improved the average accuracy of 

comment-only data by 9.41% compared to emoji symbols.  It 

can be stated that emoji text was better than emoji symbols 

because emoji symbols could not be learned quickly by using 

ML. Since there was no negative difference, it can be 

concluded that emoji text was superior to emoji symbols 

across all ML methods and scenarios. There was a drawback 

to this result. We had to convert emoji symbols to text before 

detecting spam comments. XGB and RF reached the most 

considerable average improvement. On the other hand, the 

lowest was the KNN7 method.  The best method was XGB 

in 1CTSMB (1-gram comment manual features balanced). In 

contrast, KNN7 was the worst method in the 1CTS scenario. 

Figure 10 shows the average improvement accuracy 

between emoji text and emoji symbols in post-comment pairs 

data was +6.98%, lower than the comment-only data.  The 

highest average method was AB which reached a value of 

+33.33%, followed by XGB at +29.82%. The lowest average 

method was RF, with a value of 3.09%, higher than the 

lowest average method in comment-only data (+1.81%).  The 

F1 score comparison between comment emoji text and 

comment emoji symbols had an average of 6.98%. However, 

the post-comment comparison got an average of 10.73%, 

which was higher than the accuracy. DT method got the 

highest average accuracy increment score. The F1 score 

comparison could not be displayed here due to the word-

count limit of this article.  Figures 9 and 10 illustrate the 

accuracy performance between emoji text and emoji symbols 

on comment-only data and post-comment pairs. The hard 

ensemble voting performed better in the accuracy and F1 

score increment comparison. 

We believe that post-comment pairs data promises further 

investigation because it allows for pairing post-context data 

with comments. The use of post-comment as a pair can 

provide the contextual relation between a post and a 

comment, so it can detect whether the comment is related or 

not to the post.  In the end, we could determine whether a 

comment was spam by using the relation and the context. 
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FIGURE 9. Accuracy Comparison Between Emoji Text and Emoji Symbol in Comment Only Data (In Percent) 

 
FIGURE 10. Accuracy Comparison Between Emoji Text and Emoji Symbol in Post-Comment Pairs (In Percent) 

 

9) PERFORMANCE COMPARISON BETWEEN EMOJI 
POST-COMMENT PAIRS AND POST-COMMENT 
CONCATENATION APPROACH, MANUAL FEATURES, 
ENSEMBLE METHOD, AND BALANCED SCENARIO. 

In the final section, we evaluate the comparative performance 

between post-comment pairs using two approaches. The first 

approach was using the post-and-comment data in TFIDF 

vectors and then stacking them horizontally as a pair vector.  

The second approach was using the post-and-comment data 

but by concatenating them as single sentences (post 

concatenated with comment) and then converting them into a 

TFIDF vector as a single vector.  We also compared the 

impact of manual features and balanced/unbalanced dataset 

scenarios.  Table XIV shows that the summary of the average 

accuracy improvement of post-comment as horizontally 

stacked pairs was +5.49% than post-comment concatenate 

(join string) with emojis. On the other hand, the use of post-

comment as the concatenated string post-and-comment 

dropped to -6.97% even from the comment-only data in the 

average F1 score. 

   Moreover, the use of a concatenated string of posts and 

comments also dropped by -4.5% in average accuracy 

compared to post-comment stacked pairs.  We can see that 
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post-comment use in concatenated data was worse than that 

in horizontal stacked pairs data.  We believe the horizontally 

stacked pairs of TFIDF post-comment vectors are one of the 

best approaches to represent the post-comment pairs data 

using ML techniques.  Emojis had more significant features 

compared to those without emojis in comments only and 

post-comment.  Emoji text is better than emoji symbols.  

Manual features and balanced scenarios also increased the 

accuracy and F1 score. The best scenario from all the 

experiments was the comment/post-comment emoji text to 

add the feature. Soft ensemble voting got the best average 

accuracy and F1 score compared to hard voting. 
TABLE XIV.  AVERAGE ACCURACY AND F1 SCORE INCREMENT OF POST-

COMMENT PAIRS APPROACH AND POST-COMMENT CONCAT, MANUAL 

FEATURES, ENSEMBLE, AND BALANCED SCENARIO (IN PERCENT) 

Scenario (with emoji) 

Avg Accuracy 

Increment 

Avg F1 Score 

Increment 

Post-comment stacked pairs 

vs. post-comment 

concatenate +5.49 +6.97 

Comment-only vs. post-

comment concatenate +4.5 +5.88 

Manual features addition vs. 

regular +3,75 +1,89 

Ensemble hard-voting post-

comment pairs vs. comment 

only +0.6 +0.55 

Ensemble soft voting post-

comment pairs vs. comment 

only +3.1 +3.25 

Balanced vs. unbalanced  +2.19 +2.96 

 

10) ANALYSIS AND DISCUSSION 

Based on our comprehensive study of many scenarios we 

discussed previously and the performance comparisons, it 

can be concluded that emojis significantly improved the 

detection performance of machine learning systems. 

Improved performance of emoji usage could reach an 

average of +4.65% to +6.64% in terms of accuracy and F1 

score. Using post-comment as stacked pairs could improve 

the performance by about +5.49% to +6.97% rather than as a 

concatenated post-comment. Using emoji text was also better 

than emoji symbols in every scenario.  Using manual features 

could increase the performance from +1.53% to +3.75% in 

accuracy. The ensemble methods could improve the 

performance from +0.6% to +3.25%.  The balanced dataset 

also increased by +2.19% to +2.96%, better than the 

unbalanced dataset. 

Emoji in text format performed better since the emoji 

symbol format was more difficult to process by pre-

processing, and the sklearn's TF-IDF library uses word-based 

delimiters. Meanwhile, the pre-processing section and the 

TFIDF framework fully support emojis in text format. The 

dataset converted into a balanced dataset also improved the 

performance, particularly F1 scores, because the spam and 

non-spam categories became more proportional than before. 

The addition of manual features, such as in Table VB, could 

also improve the characteristics of the data so that it could be 

detected better. 

Based on the data obtained, it can also be seen that the best 

methods capable of detecting spam comments were the 

SVM-RBF, RF, and ET. Most were occupied by tree-based 

algorithms, boosting, and ensemble learning. MLP as a 

primary deep learning method also yielded promising results, 

but it still needed to be explored further, especially pertinent 

to hyper-parameters and various other architectures. The 

detection performance value only reached an average 

between 74.1% and 84.56% in accuracy and between 71,4% 

and 81% in the F1 score. 

The proposed ensemble machine learning with soft voting 

could achieve the best average in both accuracy and F1 score 

because the soft voting ensemble method could select the 

best classifier using the probability and threshold 

automatically.  These ensemble methods can be used as the 

final model for the production mode.  Hard voting had a 

lower performance because it used only the majority voting 

between the classifiers. 

All the experiments attempted to use the comment dataset 

independently as a stand-alone dataset, as well as the post-

and-comment datasets as horizontally stacked pair vectors. 

Merging post-comment data as concatenated data yielded 

poorer results than merging post-comment data as post-

comment pairings. It was still necessary for remark spam 

detection to pay closer attention to the post context. Deep 

learning is an alternative technique that must be evaluated 

with exemplary architecture, especially for processing the 

context between comments and posts as a pair of input data 

that is simultaneously processed. Further research requires 

the detection of spam comments as an integral component of 

the document. A comment is regarded spam (irrelevant to 

post data) if the detection procedure is carried out in 

accordance with the context of the post. The process of spam 

detection will be investigated as a classification subtask 

known as sentence-pair classification. 

V. CONCLUSION 

This research aimed to enhance the detection of spam 

comments on social media with comprehensive experiments 

and analysis based on various test scenarios.  This research 

differed from other studies that did not include the emoji 

feature in its detection method and only detected spam from 

the content of the comments. This study investigated the 

features of emojis and post-comment pair data to determine 

the optimal method, scenario, and features. 

The experiment was conducted using 14 state-of-the-art 

ML models with various scenarios using the SpamID-Pair 

dataset to determine the significance of emoji features, which 

were usually ignored in many NLP types of research. We 

also investigated the use of post-comment pairs of TFIDF 

vectors stacked horizontally to enhance the performance. The 
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results demonstrate the performance and comparison of 

accuracy and F1 scores across the various scenarios. The text 

emoji feature could enhance spam comment detection on 

social media, as evidenced by the performance improvement 

using machine learning methods by an average of 4% to 6%. 

Post-comment pairs data was also proven to improve 

detection performance by an average of 0.7% to 2.11%.  To 

the best of our knowledge, this spam comment detection 

based on the post and comment as a pair is the first to 

conduct, especially in the context of Indonesian social media 

users. Adding manual features could also enhance detection 

performance by an average of 1.35% to 2.18%.  The best 

methods for spam comment detection were SVM-RBF, RF, 

and ET algorithm using the C-PCTM and C-PCTMB 

scenarios. The ensemble soft voting method yielded the best 

average performance in both accuracy and F1 score rather 

than a single classifier.  It could be used in production mode. 

However, it has one disadvantage due to its big-size model 

compared to each/single model without the ensemble 

technique. In conclusion, using emojis, a post-comment pairs 

approach, and balanced-manual features in both comments 

and pairs of comments did improve the performance. 

However, this research may not yet fully understand the 

context between posts and comments using machine 

learning. A suitable model and method to determine the 

semantic relationship are still required in future studies. The 

context between posts and comments is crucial to know the 

relevance between comments and posts, so spam comments 

can be better detected to increase the accuracy and F1 score. 

We intend to apply the deep learning model in sentence pairs 

classification adaptation [49] and adjustment between post 

and comment vector representations to determine their 

relevance. The comment that is not relevant to the post tends 

to be spam. 
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