

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Enhancing Spam Comment Detection on Social
Media with Emoji Feature and Post-Comment
Pairs Approach using Ensemble Methods of
Machine Learning

Antonius Rachmat Chrismanto1, Anny Kartika Sari2*, and Yohanes Suyanto3
1,2,3 Department of Computer Science and Electronics, Universitas Gadjah Mada, Indonesia
1 Faculty of Information Technology, Universitas Kristen Duta Wacana, Indonesia

Corresponding author*: Anny Kartika Sari (email: a_kartikasari@ugm.ac.id).

ABSTRACT: Every time a well-known public figure posts something on social media, it encourages many

users to comment. Unfortunately, not all comments are relevant to the post. Some are spam comments

which can disrupt the overall flow of information. This research employed two strategies to address issues

in text spam detection on social media. The first strategy was utilizing emojis that had been frequently

discarded in many studies. In fact, many social media users use emojis to convey their intentions. The

second strategy was utilizing stacked post-comment pairs, which was different from many spam detection

systems that solely focused on comment-only data. The post-comment pairs were required to detect whether

a comment was relevant (not spam) or spam based on the post context. This research used the SpamID-Pair

dataset derived from social media for Indonesian spam comment detection. After a comprehensive

investigation, the emoji-text feature, the stacked post-comment pairs, and ensemble voting could boost

detection performance (in terms of accuracy and F1). Adding manual features also improved detection

performance. Based on the experiment, the best stand-alone methods for spam comment detection are the

SVM (RBF kernel) and the soft voting ensemble method for the best average performance.

INDEX TERMS spam detection, ensemble method, emoji feature, post-comment pair, social media.

I. INTRODUCTION

Social media enables people to share their ideas and

aspirations, collaborate, conduct business, promote products,

and participate in politics. Popular social media platforms

include Facebook (FB) for more formal or semi-formal text

and image media, YouTube (YT) for semi-formal videos,

Tik-Tok (TT) for non-formal videos, Instagram (IG) for

semi-formal and non-formal text, images, and videos, and

Twitter (TW) for semi-formal and non-formal text and

images [1]. These social media have large user bases, are

fully- and well-functioning, and are used by celebrities to

increase their popularity.

Public figures who have large numbers of followers on

social media include celebrities. Many celebrities utilize

social media for promoting their activities, increasing their

popularity, interacting with their followers, and other

purposes. The more famous the celebrities are, the greater

number of followers they have. With more followers,

celebrities can interact with their fans more frequently [2]. As

is characteristic of Web 2.0, users can now comment

creatively on celebrities’ feeds.

TW, YT, and IG are frequently used in spam detection

research because these social media contain a lot of spam

accounts and spam content. Particularly in Indonesia, spam

content is usually found in comments against Indonesian

artists, especially on IG [2]. Figure 1 depicts an example of a

post and spam comments on social media in Indonesia of the

@ayutingting account. Spam comments are very annoying

and can disrupt the flow of information in the comments on a

given post/status. Although some social media platforms

already have spam filters, these are limited to English.

Another problem is the limited publicly available datasets

for identifying spam text on social media. Most datasets on

social media are found in English, and obtaining datasets in

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

other languages, including Indonesian, is challenging. Many

researchers conducted similar studies using their own

collected datasets without sharing them.

FIGURE 1. Example of A Public Figure’s Post and Spam
Comments on Social Media in Indonesia
(https://www.instagram.com/p/CoRJyJgKaQP/)

SpamID-Pair1 is a dataset provided for spam content

detection in the Indonesian language available in Mendeley

Data Repository. SpamID-Pair provides posts from

Indonesian artists and their comments as pairs labeled

spam/not spam. This dataset includes many emojis, which

are widely used on social media. Users on social media

frequently utilize emojis to describe their emotions and

intentions. However, in various research in the Natural

Language Processing (NLP) field, most emoji features are

discarded/not used [3].

Studies of spam content detection have been previously

conducted [4]–[9]. However, detecting spam content,

particularly spam comments, is difficult due to multiple

causes, for example: 1) the very unstructured and abnormal

form of comment text; 2) the number of symbols and

emoticons used by users; 3) the number of typos, intentional

abbreviations, non-standard words, and mixed language

usage; 4) some content is intentionally camouflaged to avoid

being detected as spam, such as using the \/ sign instead of

the letter V which becomes unreadable by the system; 5) the

comments are spam but contain very subtle ads; and 6) the

system fails to recognize the semantic meaning or semantic

relationship between posts and comments. These issues are

complex, require investigations, and necessitate many

mutually supporting solution modules.

Some machine learning techniques in NLP can be used to

identify spam comments. Based on [10], 14 best Machine

Learning (ML) classification methods have been studied and

compared, namely Support Vector Machine (SVM), Random

Forest (RF), Logistic Regression (LR), Extreme Gradient

Boosting (XGBoost), K-Nearest Neighbor (KNN), Ada

1 SPAMID-PAIR on Mendeley Data Repository

(https://data.mendeley.com/datasets/fj5pbdf95t)

Boost (AB), Naïve Bayes (NB), Multi-Layer Perceptron

(MLP), and Decision Tree (DT). Machine learning

techniques, also known as shallow learning techniques, are

increasingly developing toward deep learning, which requires

different learning techniques.

In this paper, the authors compared and explored the

SpamID-Pair dataset collected from 12 celebrities with over

15 million followers [11] with different machine learning

techniques according to [10] plus Complement Naïve Bayes

(CNB) and Extra Tree (ET). This research made a

contribution by providing comprehensive experimental

results of spam detection performance (accuracy and F1)

between non-emoji and emoji features with various

combinations of hyperparameter scenarios (n-grams features,

balanced/unbalanced data, the use of comment-only/post-

comment pairs approach) using state-of-the-art machine

learning and ensemble voting methods as well as their

analysis [10]. This research also offers a new approach that

uses post and comment text as pair-stacked input in machine

learning to identify spam comments based on the posting

context. This research uses NLP techniques on the

Indonesian SpamID-Pair dataset.

The rest of the article is written as follows: 1) the

introduction section that contains the background of spam on

social media, the spam detection research problem, and our

proposed research contribution; 2) the literature review

section that includes up-to-date literature and theoretical

references about spam detection using ML and ML

algorithms; 3) the research methodology section that

describes the scientific method used in this research,

including the dataset used, pre-processing, implementation of

14 ML methods, and evaluation method; 4) the results-and-

discussion section which describes the proposed ensemble

models' experiments, results, analysis, and discussions; and

5) the conclusion section which explains our conclusion and

suggestions for further research.

II. LITERATURE REVIEW

Some research on spam content detection has been conducted

previously. Spam detection was mainly done in text

messages [12], such as in the Short Message Services (SMS)

[13], [14], which employed the UCI SMS dataset with the

CNN method using auxiliary hand-engineered features [13].

Spam SMS was also detected using RNN-LSTM and LSTM

only, which were also compared to machine learning

methods [14]. Besides messages, there is much spam content

on social media. Spam content can be found on social media

like IG, FB, and TW [17].

Article [4] detected spam content based on spammers’

accounts on IG in English. This study used Random Forest

(RF) to detect the text content datasets totaling 1983 and

953808 media using their proposed method with special

hand-engineered addition features. The significant hand-

engineered features are a) the presence/absence of mention

tags to another users; b) the hashtags number used,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

particularly the hashtags used that are not related to the

content; c) the presence or absence of repeated words; d)

specific keywords which tend to be spam as defined; and e)

the presence/absence of watermarks on images. Using hand

engineered features and k=10 in k-fold validation, the result

reached 96.27%. Utilizing features that necessitated manual

extraction was one of the limitations of the research.

The research [15] differed from [4] in that it employed

Indonesian rather than English and did not detect spam posts

but rather spam comments. The dataset used in [15] came

from a publicly available dataset of Indonesian accounts.

However, in contrast to what the authors did, the spam

comments referenced in the study [15] were Indonesian-

language comments with promotional purposes (such as

advertising products). The combination of 1) keyword, 2)

content text, and 3) hand-engineered features were employed.

The handcrafted characteristics included the number of

capital letters, the comment length, and the number of

emoticons. Methods used in [15] did not use the emoji

features. The keyword feature in the study consisted of

specific keywords identified as selling/promoting particular

products and extracted using an NLP regular expression

pattern. Finally, the text features were extracted and weighted

through various configurations of TFIDF, Bag of Words, and

FastText techniques. Nave Bayes, SVM, and XGBoost were

the classification methods used. Based on [15], it was found

that using all of the features (features 1, 2, and 3) resulted in

an F1 score of 96%. According to the research presented in

[15], the employed characteristics were highly contingent on

the dataset and cannot be applied to all new data, particularly

for keywords retrieved using regular expressions.

Research on Indonesian spam comment detection,

particularly on Instagram, was still rare. A study in [5]

employed the Nave Bayes (NB) algorithm to detect

Indonesian spam comments with a 72% accuracy rate. In

contrast, [6] employed the opposite Nave Bayes algorithm,

Complementary Naïve Bayes (CNB), because it used an

unbalanced dataset between non spam and spam comments.

With more non-spam comments than spam, the CNB

algorithm could achieve an accuracy of 92%, while SVM

only achieved 87%. Recent research on social media spam

detection, including methods, results, datasets, emoji usage,

and post context, is presented in Table I. Table I

demonstrates that most researchers utilized privately

compiled datasets.

SpamID-Pair is one of the available datasets and is taken

from social media. The hallmark of this dataset is that it

includes a large number of emojis that are included in the

content. This dataset is also distinctive because the data

consists of pairs of posts and comments labeled as spam or

non-spam. The social media used in this dataset is IG. The

reason is that IG is a popular social media with many users,

and many public figures use it. Consequently, much spam is

detected, especially in the comments of public figures on

Instagram. IG data contains informal language, lots of

emoticons/emojis, some of typos and abbreviations, lots of

code mixes (mixed languages), comments of varying lengths

but relatively short (1-3 sentences @ five words), a post-

reply structure with no hierarchical data, and mention tags

(using the symbol '@') [9].
TABLE I. RECENT RESEARCH OF SPAM DETECTION ON SOCIAL MEDIA

Methods Language Results Datasets Emoji

and

Post

Year

NB,

SVM,
XGB

INA F1: 0.96

(SVM)

IG

comments
(private

datasets)

24602 data

No 2017

[15]

RF ENG Acc: 0.96 IG profile

(private

dataset)

1983

profiles

No 2017 [4]

NB INA Acc: 0.77
(balanced)

IG
comments

(private

dataset)
14500 data

No 2017
[16]

RF, SVM,

NB

ENG F1: 0.95

(SVM)

YT

comments
(private

dataset)

13000

No 2018 [2]

AGA,

ANN,

SVM

ENG Acc: 0.99

(AGA)

YT

comments

(private
dataset)

No 2018

[17]

NB, LR ENG Acc: 0.87

(LR)

YT

comments
(private)

1956 data)

No 2019

[18]

NB, CNB INA F1:0.94
(CNB)

IG
comments

(private)

No 2019 [6]

RF, NB,
DT

ENG Acc: 0.90
(RF)

YT
comment

UCI

No 2019
[19]

LSTM,
CNN

BGL Acc: 0.95
(CNN)

Social
Media

No 2019
[20]

NB INA F1: 0.83 IG

comment
(private)

700 data

No 2019 [5]

LR, DT,

RF, AB,

SVM

ENG Acc: 0.95

(SVM)

YT

comments

(private)

400000

data

No 2020

[21]

KNN,
DW-KNN

INA Acc: 0.91
(DWKNN)

IG
comments

(private)

14500

No 2020 [8]

DT, KNN,

SVC, GB,

NB

ENG Acc: 0.78

(NB)

FB

comment

(private)
2759 data,

unbalanced

No 2021

[22]

CNN INA Acc: 0.97
(CNN

multi

modal)

IG posts
image and

text

(private)
8000 data

No 2021
[23]

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

CART,

LR, NB,

RF, SVM,
ANN,

ESM

ENG Acc: 0.95

(ESM)

YT

comments

(private) 6
million

data

No 2021

[24]

DT, SVM,
NB, RF,

KNN

ARB Acc: 0.84
(SVM)

YT
comments

(private)

40000 data

No 2022
[25]

SVM, RF ENG Acc: 0.95

(SVM)

YT

comments

on UCI
1956 data

No 2022

[26]

14 ML

Methods
(Ensemble

Voting)

INA Acc, F1 IG

SpamID-
Pair

(public)

Yes Our

proposed
(2023)

NB: Naïve Bayes; SVM: Support Vector Machine; XGB: eXtreme Gradient

Boosting RF: Random Forest; AGA: Advanced Gradient; LR: Logistics

Regression; CNB: Complement Naïve Bayes; DT: Decision Tree; LSTM:

Long-sort Term Memory; AB: AdaBoost; KNN: K-Nearest Neighbor; DW-

KNN: Distance Weighted KNN; GB: Gradient Boosting; CART: Decision

Tree Variant; ANN: Artificial Neural Network; ESM: Ensemble Softmax.

The pre-processing phase was nearly identical to that of

numerous studies that employed text data. NLP techniques

were required for most pre-processing in detecting spam

remarks or posts. Several references, such as [27]–[29],

explained the importance of text pre-processing before

further processing. Tokenization, case-folding, n-gram

features, stemming, post-tagging, and stop-words removal

were the methods that were used. Based on these pre-

processing techniques, stemming techniques had the least

significant effect. [29]. Besides pre-processing, most

features in many NLP research features were the text. Some

research used tokens feature in the form of BoW or weighted

tokens in the form of TFIDF [30].

A. MACHINE LEARNING FOR TEXT CLASSIFICATION

There are two distinct approaches to machine learning:

unsupervised and supervised learning. If it has problems with

recognition or classification, it falls into supervised learning.

However, this classification can also be developed using

weakly-supervised or semi-supervised learning. The weakly

supervised technique is based on the premise that unlabeled

data can be labeled using only a small number of dataset

labels and learning outcomes with a small number of labels.

Several studies on weak supervision [22] and [23] also

employed deep learning.

We primarily used machine learning methods from the

best classification state-of-the-art methods from research

[10]. We also combined a few other techniques, so there

were 14 ML methods used in this research. These methods

were the Multinomial NB method, Bernoulli Naïve Bayes

(BNB), Complement Naïve Bayes (CNB), SVM Linear

(SVML), SVM Radial Basis Function (SVMRBF), KNN

(n=3), Decision Tree (DT), Random Forest (RF), Ada Boost

(AB), XGBoost (XGB), Logistic Regression (LR), Extreme

Tree (ET), Stochastic Gradient Descent (SGD), and Multi-

Layer Perceptron (MLP). Detailed information about the

techniques used in this study can be seen in Table IIIB.

Text spam detection belongs to text classification

problems. As a text classification problem, we formulated a

research problem as a document d as a document space (X)

member, and there were fixed classes/labels C = {c1, c2, c3

…, cn}. In spam detection/classification, the document space

was typically high-dimensional. We were given a training

set post-comment (PC) of a labeled document {d,c} where

{d,c} was a member of X x C [31].

Naive Bayes is founded on Bayes' theorem and makes

naive assumptions for each pair of features and class [32].

Theorem of Bayes where y is a class and x1 through xn can be

formulated as (1):

𝑃(𝑦 ∣∣ 𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛∣∣𝑦)

𝑃(𝑥1,…,𝑥𝑛)
 (1)

This formula assumes the naive conditions are independent

as formula (2):

𝑃(𝑥𝑖|𝑦, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝑦) (2)

NB predicts, for all data, whether x belongs to class y with

the maximum posterior probability, according to the formula

(3).

𝑃(𝑦 ∣∣ 𝑥1, … , 𝑥𝑛) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖 ∣∣𝑦)𝑛

𝑖=1

𝑃(𝑥1,…,𝑥𝑛)
 (3)

Since P(x_1,…,x_n) is constant, (3) can be simplified to

formula (4) and formula (5) [33]:

𝑃(𝑦 ∣∣ 𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏ 𝑃(𝑥𝑖 ∣∣ 𝑦)𝑛
𝑖=1 (4)

�̂� = 𝑎𝑟𝑔(𝑚𝑎𝑥)
𝑦

𝑃 (𝑦) ∏ 𝑃(𝑥𝑖 ∣∣ 𝑦)𝑛
𝑖=1)

Where

𝑃(𝑥1, … , 𝑥𝑛|𝑦) =
1

𝜎𝑖𝑘√2𝜋
 𝑒

(𝑥𝑘− 𝜇𝑖𝑘)2

2 𝜎𝑖𝑘
2

is for continuous attributes.

The difference between Bernoulli Naïve Bayes (BNB)

and Multinomial Naïve Bayes (MNB) is well suited for

handling sorted text (documents), binary attributes, and

multiple occurrences of tokens are ignored [31]. In addition,

MNB is superior for handling larger texts, considering

consecutive attributes and multiple occurrences of tokens.

Compliment Naïve Bayes (CNB) is a multinomial NB

variant suitable for working with non-uniform dataset

distributions (imbalanced datasets). Instead of computing the

probability that an item belongs to a particular class, CNB

calculates the probability that an item belongs to all classes

[34]. The CNB formula is derived from the formula MNB in

formula (5), as seen in formula (6).

�̂� = 𝑎𝑟𝑔(𝑚𝑎𝑥)
𝑦

𝑃 (𝑦) ∏
1

𝑃(𝑥𝑖 ∣∣𝑦)

𝑛
𝑖=1)

The SVM method is a technique that is considered to be

very effective at classifying two classes (binary). It is

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

memory efficient and has numerous kernel techniques that

can be utilized in various situations. [35]. Vapnik presented

the SVM algorithm in 1992 as a classifier algorithm based on

a supervised learning technique. The SVM method seeks and

locates an x-1-dimensional hyperplane to classify or

categorize training data with multiple x attributes (the vector

has x dimensions). The distance (margin) between classes

must be maximized to locate the hyperplane. Consequently,

SVM can guarantee that future data are extremely

generalizable [36].

Assume that it is known that training data has been labeled

and contains multiple x attributes (or pairs), (xi, yi) with i = 1,

2, 3…, n, where n is the number of training data. While xi

represents the set of attributes in the i and yi training data is

the class of i training data. SVM will calculate the

optimization problem using equation (7) [37]:

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑥
𝑖=1)

With the provisions according to formula (8):

𝑦_𝑖 (𝑤^𝑇 𝜙(𝑥_𝑖) + 𝑏 ≥ 1 − 𝜉_𝑖 , 𝑑𝑎𝑛 𝜉_𝑖 > 0. (8)

Kernel function in SVM [33] is a transformation to

determine the support vector so, which is learned in SVM

as formulated as K(Xi, Xj) = Φ(𝑥𝑖). Φ(𝑥𝑗). Linear kernel is

formulated as K(Xi, Xj) = 𝑥𝑘
𝑇 . 𝑥 and radial basis function

(RBF) as K(Xi, Xj) = exp {−
||𝑥−𝑥𝑘||

2

2

𝜎2 }.

K-Nearest Neighbor (KNN) is a type of supervised

learning in which fresh data is classified based on the

majority of the k-nearest neighbor category. As the predicted

value for a new data value, the KNN algorithm employs

Neighborhood Classification. The use of KNN in text

classification is illustrated in [38], with an average accuracy

of 95%.

KNN calculates the minimum distance between the data to

be evaluated and the k closest nodes in the training data,

where k is the number of nearest neighbors. The KNN

algorithm consists of the following steps: 1) determining k,

2) calculating similarity / distance between the new and

existing data, 3) sorting the distance by a threshold called k,

and 4) selecting the class with the greatest number of

members that has the nearest distance. The distance formula

is found in equation (9).

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (9)

A gradient-boosting algorithm is used for regression and

classification problems. The components of this algorithm

are a weak function, a weak learner, and an adaptive model.

The loss function is highly dependent on the training dataset;

weak learners can make predictions, and the additive model

minimizes the loss function by incorporating weak learners.

A Decision Tree (DT) is a well-known method for

classifying data that can be applied to complex problems

[39]. Iterative Dichotomiser 3 (ID3), C4.5, which abolished

the limitation of categorical features in ID3 by dynamically

defining a discrete attribute that partitions the continuous

attribute value into a discrete set of intervals, and CART

(Classification and Regression Trees) are examples of DT

algorithms. CART is comparable to C4.5, with the exception

that it supports numerical target variables (regression) and

does not compute rule sets [33]. CART generates binary trees

employing the characteristic and threshold that produce the

greatest information gain at each node. Gini Impurity is the

Gini index used by CART for its splitting criterion. Scikit-

learn employs a CART-optimized algorithm, but categorical

variables are not presently supported [40].

All the classification methods described above are usually

unstable and can be trapped in overfitting conditions. There

are some ensemble learning methods. The main idea of this

classifier is to use majority voting based on some ensemble

methods. Some ensemble methods are bagging, boosting,

stacking, and random forest (random ensemble). Boosting

technique works to boost the weakest classifier algorithm

[33].

Ada Boost is a meta-algorithm that evaluates the classifier

on the original dataset and then modifies it using the same

dataset. However, the weight of the incorrectly classified data

is recalculated in order for the subsequent classifier to

classify with greater precision [41]. The eXtreme Gradient

Boosting (XGB) algorithm also includes a boosting

component [42]. This algorithm combines models with

limited precision in order to create a model with increased

precision. The decision tree developed by Tianqi Chen

functions as the basis for XGBoost. Since XGBoost was

created as a library, it is compatible with a variety of

programming languages, including Java, C++, Python, R,

and Julia. Using L1 and L2 regularization, XGBoost supports

SGD (Stochastic Gradient Boosting), Regular Gradient

Boosting, and Regularized Gradient Boosting [43].

Random forest (RF) is a variant of the bagging technique

in the ensemble methods. RF uses decision tree

combinations, so each tree depends on random values from

independent samples with uniform distribution. RF selects

random features to partition each node to achieve high

precision [33]. Additionally, the Extra Tree algorithm is

founded on decision trees and ensembles of random forests.

Extra Trees Classifiers, such as arbitrary Forest, make

arbitrary decisions and randomize particular subsets of data

to reduce overfitting and overlearning [44] [45]. Changeable

parameters include the number of trees, features, and

minimum size per split [44].

The ensemble ML method combines all the ML methods

as training methods. It will get the best classifier by using

each classifier and training each model on a different dataset

sample. The prediction is made as majority voting using hard

voting or weighted threshold majority voting for soft voting

[46]. The ensemble voting will get the best parameters and

advantages from all the ML methods so that the final voted

method is returned and chosen as the final classifier [24].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

The ensemble method is added as the new method to get the

best classifier compared to the other methods.

B. MACHINE LEARNING EVALUATION

Three primary classification system processes exist: learning,

validation, and evaluation. As shown in Table II below, a

confusion matrix can be used to evaluate the system's

performance and accuracy in classifying the dataset's

sentiment. The confusion matrix depicts the performance of

a classification system in terms of true positives, true

negatives, false positives, and false negatives in order to

calculate precision, recall, accuracy, and F1 score. In

addition to the confusion matrix, the Area Under Curve

(AUC) and the Receiver Operating Curve (ROC) can be used

to determine the classification accuracy based on the true

positive rate and false positive rate [47].
TABLE II. CONFUSION MATRIX

 Predicted

Negative Positive

Real Negative True

Negative

False

Negative

Positive False

Positive

True

Positive

From the confusion matrix in Table II, additional calculations

can be done to get the level of accuracy (accuracy) and f-

measure in formulas (10) and (11).

Accuracy = (TN + TP) / (TN + FP + FN + TP) (10)

F1 Score = 2 * TP / (TP + FP + FN) (11)

III. RESEARCH METHODOLOGY

The methodology proposed and carried out in this research

is as follows (see also Figure 2):

1. Using and processing the SpamID-Pair dataset

2. Data exploration (profiling)

3. Pre-processing and data cleaning

4. Removing stop words

5. Normalization process

6. Implementing the spam comment detection

algorithms according to Table IVA.

7. Experiment and evaluation based on the scenario

in Table IVB.

8. Analysis, discussion, and conclusion stages.

Our research methodology is explained in more detail in the

following sections.

A. SPAMID-PAIR DATASET

In this experiment, we used the SpamID-Pair dataset [48].

This dataset consisted of pairs of posts and comments from

social media in Indonesian. The dataset contained 72874 data

with spam or non-spam labels. Details of information on this

dataset can be seen in Table III.

The characteristics of the SpamID-Pair dataset were: it

consisted of repeated letters and symbols, included Unicode

symbols, included emojis, contained non-standard/different

abbreviations, had a lot of misspelled words, contained

custom symbols, and contained code-mixing languages

(Indonesian mixed with other languages).
TABLE III. SPAMID-PAIR DATASET PROFILE

IGID Number of

followers (millions) Non-spam Spam

1918078581 54.3 4565 2251

522969993 47.4 5712 1108

225064794 42.4 3397 691
24239929 36.4 818 1065

2993265 34.1 4528 2022

361869464 33.6 4658 1945
26444210 33.4 6854 2466

1948416 30.7 4944 1804

8115577 27.1 65 38
5735890 25.8 5045 1557

4934196 25.2 4818 1971

30585021 15.7 5537 911

 2896 1208

Data contains emoji/not. Total Percentage

Only text 22710 31,16

Contains Emoji 50164 68,84

Data is spam/not Total Percentage

Non-spam 53837 73.88

Spam 19037 26.12

FIGURE 2. Flowchart Of The Research Methodology

B. DATA EXPLORATION AND PRE-PROCESSING

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Initial processing was carried out at this stage to explore,

clean, and prepare the dataset for classification. Some pre-

processing steps were:

a) Removing rows with NA/null.

b) Case folding: This process converted all the

alphanumeric characters into lowercase characters.

c) Tokenization: This process split all sentences into

words by using delimiter whitespaces. This

tokenization scenario was carried out in 2 forms,

1-gram and 2-gram.

d) Text normalization: Text normalization converted

all the tokens into “normal” tokens. The sklearn

library handled this process. The SpamID-Pair

dataset already provided data that was already

normalized and also in raw format.

e) Stopwords elimination: This process eliminated all

the stopwords from the Indonesian stopword list.

In this pre-processing step, we used Python libraries, such as

Pandas and OpenPyXl for dataset manipulation, Matplotlib,

and Seaborn for graphic and chart visualization, Tqdm for

progress bar, and Sklearn as well as NLTK for text

manipulation.

C. IMPLEMENTATION OF ML ALGORITHMS AND
EVALUATION METRICS

Table IIIA shows the hardware and software utilized in this

research. Due to limited resources, we made use of online

machines in the cloud provided by AWS and offline on-

premise machines. In accordance with [10] and two

ensemble voting methods (soft and hard), various machine

learning classification techniques were applied to process

spam detection in this stage. Hard and soft ensemble methods

took advantage of 14 ML methods and used the majority

voting for the hard and weighted voting for the soft voting.

All of the machine learning algorithms we used can be seen

in Table IIIB. Table IIIB also displays the hyper-parameters

(changed from the default or addition parameters) of the

Scikit-learn library. The evaluations used in the case of spam

comment detection were accuracy and F1-score. The reason

we used F1-score was that the SpamID-Pair dataset was

unbalanced, so using only accuracy was insufficient.

We used some Python libraries in this step, such as Scikit-

learn, Pickle, and Matplotlib. Scikit-learn was employed to

create TFIDF features in 1-gram, and 2-gram tokens, split the

dataset into testing and training, implement the ML methods,

and evaluate the classification result performance metrics.

We used Pickle to save the trained model and load it again

for testing.

We made use of four computers for the experiment, two

were in the AWS cloud using SageMaker Studio Lab, and

two were local computers using a Core i5 processor, 16 GB

RAM, and 6 GB Nvidia RTX GPU. All code was generated

in Jupyter Notebook. The TF-IDF feature was built from the

SpamID-Pair text dataset with a maximum of 15000 features.

All models were also saved so they could be reused for other

implementations. Training duration varied from seconds,

hours, to one day for each training method.
TABLE IVA. DEVICES SPECIFICATION AND FEATURES USED FOR THE

EXPERIMENT

Information Value

Hardware on-premise

Processor Core i5

RAM 16 GB

GPU Nvidia RTX 6 GB

Standard cloud tool (Amazone SageMaker Studio Lab)

https://studiolab.sagemaker.aws

Features TF-IDF weighted vector with max
feature=15000, sub_linear=True

N-gram 1,2 grams

Balanced Sklearn.SMOTETomek
Pre-processing Tokenization, stopwords, normalization,

stemming

Dataset 80% (70% (training) +10% (validation)) dan

20% (testing)

K-Fold: 10

Evaluation matrix Confusion matrix (accuracy and F1 score)

TABLE IVB. TESTING PARAMETERS OF ML ALGORITHMS USED IN THE

EXPERIMENT

ML Method Parameter Value

Naïve Bayes Multinomial

(NB)

alpha 1.1

Bernoulli Naïve Bayes (BNB)

alpha

binarize

1.1

0.51

Complement NB alpha 1.1

SVM Linear (SVML)

random_state

dual

penalty
tol

42

False

l2
0,0001

SVM RBF (SVMRBF)

kernel

probability
c

gamma

probability

RBF

True
1.0

Scale

True

KNN7 (k=7)

n_neighbors

weights

metrics

7

distance

euclidean

AdaBoost (AB)

n_estimators

random_state

1000

42

Decision Tree (DT)

criterion
min_samples_split

class_weight

Entropy
3

{0:0.7}

Random Forest (RF)

random_state
warm_start

class_weight

42
true

{0,0.7}

Logistics Regression (LR)

multi_class
solver

max_iter

random_state

ovr
saga

1000

42

Xtreme Gradient Boosting

(XGB)

objective

random_state

binary-

logistic

42

Stochastics Gradient Descent
(SGD)

max_iter

tol

alpha
verbose

1000

0.0001

0.0001
0

Extra Tree (ET)

n_estimators

random_state
criterion

min_samples_split

class_weight

200

42
entropy

3

{0:0.7}

Multilayer Perceptron (MLP)

random_state

max_iter

verbose

42

300

False
Ensemble Voting from 14 voting hard and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

SotA methods (EV-H, EV-S) soft

IV. RESULTS AND DISCUSSION

Based on the methodology described in the previous section,

this study involved experiments on nine main topics, namely

the effect of comment-only data without the emoji feature,

the effect of post-comment pairs without the emoji feature,

the effect of using emojis on comment-only data, the effect

of using emojis on post-comment pairs, a comparison of

performance against the usage of emojis on comment-only

data and post-comment pairs, comparison of the performance

of using emoji-text and emoji-symbols on comment-only

data and post-comment pairs. The last part compared the

stacked pair post-comment approach and the concatenated

post-comment approach, manual features, and balanced

scenario effect. The detailed discussion is presented below.

A. DATA NORMALIZATION, EMOJI HANDLING, AND
THE USE OF MANUAL FEATURES

The normalization process was carried out after tokenization,

as written in section III.B. The program was written in

Python Jupyter Notebook and executed against the SpamID-

Pair dataset. The Kamus Besar Bahasa Indonesia (the official

dictionary of the Indonesian language) data consisted of

71798 word-class data (verb verbs, nouns, and adjective

adjectives). In contrast, the dictionary data for

abbreviations/acronyms/slang words was 1791 word pairs.

The normalization process changed tokens that did not match

the standard Indonesian spelling. The normalization method

performed the following steps:

1. All tokens were matched with words in the

dictionary. If it was not found in the dictionary,

then the matching process was carried out with the

abbreviation and slang word dictionary. If it was

located in the dictionary of abbreviations,

acronyms, and slang terms, the token was replaced

with the appropriate token based on the dictionary.

2. All other tokens that were not found anywhere

were left unchanged.

3. We removed punctuation in a list of "!$%&\+-

<=>[\\]`{|}~" because it is related to emoji

expressions.

4. We removed double letters in words such as

“sayaaaa!!”, “cobaa…”, etc.).

5. We also converted some parts into special tagging

with an UPPERCASE letter, such as URL pattern

into HTTPURL tag, email pattern into EMAIL tag,

user mentions into @USER tag, number pattern

into ANGKA, and hashtag pattern into

#HASHTAG tag.

For the emoji handling, we sent the processed tokens to the

Demoji Python library and used the demojize() function that

listed all converted emoji symbols to emoji text descriptions

in plain English as the state in the standard UTF emoji table.

We also made the scenario for the data without emojis with

the Demoji library and removed all emojis returned by the

get_emoji_regexp() function. Some examples of

normalization and emoji text conversion can be seen in Table

V.
TABLE V. NORMALIZATION AND EMOJI TEXT CONVERSION EXAMPLES

Original Text Converted Text

KELUARIN SEMUA AGNEZ

POST!!!!

keluarin semua agnez
crying_face

smiling_face_with_heart-

eyes post

Slmt siqng bini gw,yuk mkn siang,aku

suapin pake rendang mauu??

selamat siqng bini gua

yuk makan siang aku
suapin pakai rendang mau

 smiling_face_with_heart-
eyes

smiling_face_with_heart-

eyes

smiling_face_with_heart-

eyes clapping_hands

clapping_hands
clapping_hands

Woooww . . Seediaf0llowerss

guyss

woooww

smiling_face_with_heart-
eyes fire seediaf0llowerss

guys fire fire

TF-IDF features are generated as follows: if the scenario

is the comment only, we create TFIDF using the

TfidfVectorizer from comment data and set max_features to

15000. If the scenario is post-comment, we create TFIDF

from the post, TFIDF from the comment, and then stack

horizontally. After that, we split TFIDF vector results into

train and test data. These created vectors were X_train and

y_train, X_val and y_val, X_test and y_test.

For the manual features, we used the lengths of the

comments, lengths of both posts and comments, numbers of

emojis in both posts and comments, numbers of unique

emojis in both posts and comments, numbers of occurrences

in both posts and comments, numbers of mention tags in both

posts and comments, numbers of the hashtags in both posts

and comments, numbers of capital letters in both posts and

comments, numbers of link formats in both posts and

comments, and, lastly, numbers of special characters in both

posts and comments. To merge with the TF-IDF feature, we

used scipy.sparse vector csr_matrix and created the

horizontal stack of TFIDF features and all the additional

manual features. We also applied a min_max scaling to these

manual features before passing it to the classification

method. We used the algorithm in data normalization, emoji

handle, TFIDF generation, manual features, and the scenarios

described in Algorithm 1.

We implemented 14 state-of-the-art models for the

ensemble methods as the input with all the parameters in

Table IVB. After the models were created and initialized, the

VotingClassifier was also initialized with parameters, hard

and soft. The voting classifier used majority voting models

in the decision phase. The voting model was the biggest

among the other models. After the voting model was

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

created, it continued to the training-and-predicting stage.

The algorithm can be seen in Algorithm 2.

Algorithm 1 Generate Features Method (TF-IDF, Emoji,

balanced/non, and additional features)
Require: Dataset in XLSX format

Ensure: TF-IDF vectors

1: Procedure GENERATEFEATURES(dataset)

2: df read_excel pandas(data)
3: df [”comment”].replace(”, NAN, inplace True)

4: kategori d f [”label”]

5: result pre_ processing(df [”comment”])
6: teks result

7: hasil list()

8: for word in teks.split() do

9: is-emoji bool(emoji.get emoji regexp().search(word))

10: if is_emoji == False And is_ascii(word) then

11: ketemu, pos1 cekKamus(kamus, word)
12: if ketemu == False then

13: h correction(word)

14: word h
15: end if

16: word cekKamusSingkatan(kamussingkatan,word)
17: word re.sub(’+. ’,’ANGKA’,word)

18: if word.islower() then

19: output stemmer.stem(word)

20: else

21: output word

22: end if

23: if output not in stopwords then

24: hasil.append(output)

25: end if

26: else

27: hasil.append(word)

28: end if

29: end for

30: baru ’ ’.join(hasil)

31: hasil_akhir emoji.demojize(str(baru),delimiters=(’ ’,’ ’))
32: hasil_akhir ’ ’.join(hasil akhir.split())

33: X hasil_akhir

34: y kategori
35: X_ train, X_ test,y_train,y_test train_test_split(X, y, test-size

 0.20, random-state 42)

36: Train_Y y_train; Test_Y y_test

37: P X-train

38: P [′add_features_train′] X_train[′add_feaatures′]
39: koloms1 [′add_f eatures_train′]

40: P min_max_scaling(P , koloms1)

41: add_f eatures1 P [′add_f eatures_train′]

42: Train_X_ transformed add_ feature(T rain_X_ Tfidf , [add

features1])

43: P X_test

44: P [′add_f eatures′] X_train[′add_f eatures′]
45: koloms2 [′add_f eatures_test′]

46: P min_max_scaling(P , koloms2)

47: kf KFold(n_splits10, shuffle True,random_state 42)

48: scorings [’accuracy’, ’f1’]

49: Train_X_ bal, Train_y_bal smotetomek.fit resample(Train

X_ transformed, Train_Y)

50: Test_X_ bal, Test_ y_bal smotetomek.fit_resample(Test_ X
transformed, Test- Y)

51: Train_ X_ Features [T rain_X_ bal or

Train_X_ transformed]
53: Test_ X_ Features [T est_X bal or Test_X_transformed]

54: Return: Train_X_ Features, Test_X_ Features, Train_Y ,

Test-Y
55: End Procedure

Algorithm 2 Ensemble Method Training and Testing)
Require: 14-ML models

Ensure: Hard and Soft Voting

1: Procedure ENSEMBLELEARNING(MLModels)

2: list_of_models[] getModels(NBModel, BNBModel,

CNBModel, SVMCModel, SVMRBFModel, KNN7Model,
ABModel, DTModel, RFModel, LRModel, XGBModel,

SGDModel, ETModel, MLPModel, VotingClassifier)

3: hard_voting
VotingClassifier(estimator list_of_models,

voting ’hard’)

4: soft_voting
VotingClassifier(estimator list_of_models,

voting ’soft’)

5: hard_model
list_of_models[’hard_voting’]

6: hard_model.fit(T rain-X- bal, Train-Y-bal)

7: soft_model list_of_models[’soft_ voting’]
8: soft_model.fit(T rain-X- bal, Train-Y-bal)

9: predictions-hard hard-model.predict(Test-X-bal)

10: predictions-soft soft-model.predict(Test-X-bal)
11: Return predictions-hard, prediction-soft

 12: End procedure

B. THE EXPERIMENT RESULTS

The experiment results of spam comment detection using

Machine Learning methods with various scenarios can be

seen in Tables VIA and VIB. Table VIA shows that there

were 14 ML methods used for testing spam comment data

with multiple abbreviations. As shown in Table VIB, the

scenarios were: using the TFIDF feature with 1-gram and 2-

gram, comment-only data or posts and comment-combined

data, non-emoji or emoji feature in Unicode symbols or text-

converted emoji. Emoji conversion was done by changing

the emoji symbols into the emoji descriptions according to

the Unicode Table using the Demoji library. The emoji

descriptions still used English text and a description separator

in the form of an underscore character. In each result table,

the highest values are written in bold, and the lowest ones are

written in bold italics.
TABLE VIA. MACHINE LEARNING ABBREVIATION AND ITS DESCRIPTION

USED IN THE EXPERIMENT

No. Abbreviation Name Description

1 NB Multinomial Naïve Bayes

2 BNB Bernoulli Naïve Bayes

3 CNB Complement Naïve Bayes
4 SVML SVM Linear

5 SVMRBF SVM Radial Basis Function

6 KNN7 KNN with k = 3
7 AB Ada Boost

8 DT Decision Tree

9 RF Random Forest
10 LR Logistics Regression

11 XGB eXtreme Gradient Boosting Tree

12 SGD Stochastic Gradient Descent
13 ET Extreme Tree

14 MLP Multi-Layer Perceptron

15 EH Ensemble Hard Voting
16 ES Ensemble Soft Voting

TABLE VIB. TESTING SCENARIO ABBREVIATION AND MANUAL FEATURES

Scenario Description Scenario Description

1CT Features: token 1 gram,

TFIDF, comment only,
emoji text, pre-

processing

1PCT Features: token 1

gram, TFIDF, post-
comment only,

emoji text, pre-

processing
2CT Features: token 2 gram,

TFIDF, comment only,

2PCT Features: token 2

gram, TFIDF, post-

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

emoji text, pre-

processing

comment only,

emoji text, pre-

processing
1CS Features: token 1 gram,

TFIDF, comment-only

emoji symbol, pre-
processing

1PCS Features: token 1

gram, TFIDF, post-

comment only,
emoji symbol, pre-

processing

2CS Features: token 2 gram,
TFIDF, comment-only

emoji symbol, pre-

processing

2PCS Features: token 2
gram, TFIDF, post-

comment only,

emoji symbol, pre-
processing

1CTB Features: token 1 gram,

TFIDF, comment only,
emoji text, pre-

processing, balanced

1PCTB Features: token 1

gram, TFIDF, post-
comment, emoji

text, pre-processing,

balanced
2CTB Features: token 2 gram,

TFIDF, comment only,

emoji text, pre-
processing, balanced

2PCTB Features: token 2

gram, TFIDF, post-

comment, emoji
text, pre-processing,

balanced

1CSB Features: token 1 gram,
TFIDF, comment only,

emoji symbol, pre-
processing, balanced

1PCSB Features: token 1
gram, TFIDF, post-

comment, emoji
symbol, pre-

processing,

balanced
2CSB Features: token 2 gram,

TFIDF, comment only,

emoji symbol, pre-
processing, balanced

2PCSB Features: token 2

gram, TFIDF, post-

comment, emoji
symbol, pre-

processing,

balanced
1CTM Features: token 1 gram,

TFIDF, comment only,

emoji text, pre-

processing, add manual

features

1PCTM Features: token 1

gram, TFIDF, post-

comment, emoji

text, pre-processing,

add manual features

2CTM Feature 2 gram,
comment text, emoji

text, pre-processing,

TFIDF, add manual
features

2PCTM Feature 2 gram,
post-comment text,

emoji text, pre-

processing, TFIDF,
add manual features

1CSM Feature 1 gram,

comment text, emoji
symbol, pre-processing,

TFIDF, add manual

features

1PCSM Feature 1 gram,

post-comment text,
emoji symbol, pre-

processing, TFIDF,

add manual features
2CSM Feature 2 gram,

comment text, emoji

symbol, pre-processing,
TFIDF, add manual

features

2PCSM Feature 2 gram,

post-comment text,

emoji symbol, pre-
processing, TFIDF,

add manual features

1CTMB Feature 1 gram,

comment text, emoji

text, pre-processing,

TFIDF, add manual
features, balanced

1PCTMB Feature 1 gram,

post-comment,

emoji text, pre-

processing, TFIDF,
add manual

features, balanced

2CTMB Feature 2 gram,
comment text, emoji

text, pre-processing,

TFIDF, add manual
features, balanced

2PCTMB Feature 2 gram,
post-comment text,

emoji text, pre-

processing, TFIDF,
add manual

features, balanced

1CSMB Feature 1 gram,
comment text, emoji

symbol, pre-processing,

TFIDF, add manual
features, balanced

1PCSMB Feature 1 gram,
post-comment,

emoji symbol, pre-

processing, TFIDF,
add manual

features, balanced

2CSMB Feature 2 gram,

comment text, emoji
symbol, pre-processing,

TFIDF, add manual

features, balanced

2PCSMB Feature 2 gram,

post-comment text,
emoji symbol, pre-

processing, TFIDF,

add manual
features, balanced

Manual

Features:

length of the comment, length of both post and comment,

number of emoji in both post and comment, number of unique
emoji in both post and comment, number of number

occurrences in both post and comment, number of mention

tags in both post and comment, number of the hashtag in both
post and comment, number of capital letters in both post and

comment, number of link format in both post and comment,

and the last, number of special characters in both post and
comment

1) SPAM DETECTION PERFORMANCE ON COMMENT
DATA WITHOUT EMOJIS

Table VII displays the accuracy of the comment data only

without using the emoji feature average (all the experiments

use k-fold validation with k=10). The SVM-RBF kernel

method produced the highest accuracy at 84%, while DT had

the lowest accuracy at 63% in the 2CTMB scenario. The

average accuracy across all scenarios was 78.46%. The CNB

method was not executed when the scenario was a balanced

dataset (which was generated using Sklearn.SMOTETomek

library) because CNB is used in an unbalanced dataset. In all

the tables, the cell is written as 'NA.' For example, it is

written in Table VII for the 1CTB, 2CTB, 1CTMB, and

2CTMB scenarios. The best performance based on the

scenario was 1CTB and 1CTMB using SVM-RBF, which

achieved a score of 84%, followed by the SVM-Linear in the

1CTB scenario. Table VII also shows that SVMRBF seemed

superior to the others, but Ensemble Soft Voting had the

highest average accuracy of 82.375% compared to all other

methods.
TABLE VII. THE AVERAGE ACCURACY OF COMMENT-ONLY DATA

WITHOUT EMOJIS (IN PERCENT)

Accuracy NB BNB CNB SVML RBF KNN7 AB

1CT 79 73 79 79 82 73 74

2CT 79 72 78 78 81 74 74
1CTB 75 78 NA 82 84 74 72

2CTB 74 76 NA 82 83 74 72

1CTM 79 73 81 79 82 73 76
2CTM 79 72 80 79 81 74 76

1CTMB 80 78 NA 82 84 74 71

2CTMB 80 76 NA 82 84 74 71

AVG 78,13 74,75 79,50 80,38 82,63 73,75 73,25

Accuracy DT RF LR XGB SGD ET MLP EH ES

1CT 78 80 79 76 79 80 80 80 82

2CT 78 80 79 76 79 80 79 79 81
1CTB 81 81 82 77 82 82 82 83 83

2CTB 80 82 82 77 82 82 81 83 83

1CTM 73 79 79 78 80 80 80 82 82
2CTM 70 78 79 79 79 79 80 81 82

1CTMB 65 74 82 72 82 81 79 83 83

2CTMB 63 72 82 72 83 80 79 83 83

AVG 74 78 81 76 81 81 80 82 82

Table VIII displays the average F1 scores from the

comment data without using the emoji feature. The SVM-

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

RBF method yielded the highest F1 score with the CTMB

scenario. In contrast, DT earned the lowest F1 score. The

average F1 score was 76.40%. The F1 score was also good

because it was closer to accuracy. Based on the accuracy and

F1 score, we can see that the best strategy for comment-only

data was using the comment-text balanced and adding the

manual features. The soft ensemble voting also had the

highest average F1 score at 81% among all the other

methods.
TABLE VIII. THE AVERAGE F1 SCORE OF COMMENT-ONLY DATA

WITHOUT EMOJIS (IN PERCENT)

F1

Score NB BNB CNB SVML RBF KNN7 AB
1CT 73 64 75 75 79 72 67
2CT 73 63 75 74 79 72 67
1CTB 75 78 NA 82 84 74 70
2CTB 74 76 NA 82 83 74 71
1CTM 73 64 79 75 79 71 71
2CTM 74 63 78 75 79 73 72
1CTMB 80 78 NA 82 84 73 70
2CTMB 80 76 NA 82 84 74 70
Avg 75,25 70,25 76,75 78,38 81,38 72,88 69,75

F1

Score DT RF LR XGB SGD ET MLP EH ES
1CT 76 78 75 69 75 79 78 76 79
2CT 76 78 74 69 75 78 78 75 79
1CTB 81 81 82 76 82 82 82 83 83
2CTB 80 82 82 76 82 82 81 83 83
1CTM 71 76 75 74 76 78 78 78 79
2CTM 69 76 75 74 76 77 77 78 79
1CTMB 63 73 82 70 82 81 79 83 83
2CTMB 59 71 82 71 83 80 79 83 83

AVG 72 77 78 72 79 80 79 80 81

2) SPAM DETECTION PERFORMANCE ON POST-
COMMENT PAIRS DATA WITHOUT EMOJIS

In this section, we evaluate the performance of spam

comment detection using the post-comment pairs approach

without emojis. All the emojis had been removed from this

data. It contained only text data and was converted to TFIDF

post-and-comment pairs stacked horizontally. Table IX

displays the average accuracy of post-comment pair data

without the emoji feature. The SVM-RBF methods produced

the highest accuracy value at 86% using the SVM-RBF

kernel in the 1PCTMB and 2PCTMB scenario, while DT got

the lowest accuracy at 54% in 1PCTMB and 2PCTMB. The

average accuracy value was 78.44%. The horizontally

stacked TFIDF vectors of posts and comments differed only

0.02% from the average accuracy of comment-only data

without emojis. Based on the ensemble methods, ES in post-

comment pairs had higher accuracy than in comment-only

data without emojis. ES ensemble also had the highest

average accuracy among the other methods at 83.375%.
TABLE IX. THE AVERAGE ACCURACY OF POST-COMMENT PAIRS

WITHOUT EMOJIS (IN PERCENT)

Accuracy NB BNB CNB SVML RBF KNN7 AB
1PCT 80 72 80 82 83 70 75
2PCT 80 72 79 81 83 68 74
1PCTB 78 76 NA 82 85 63 71
2PCTB 78 74 NA 82 85 62 72
1PCTM 79 75 80 82 83 72 77

2PCTM 79 73 80 82 83 69 77
1PCTMB 80 77 NA 83 86 64 71
2PCTMB 79 75 NA 83 86 61 71
AVG 79,13 74,25 79,75 82,13 84,25 66,13 73,50

Accuracy DT RF LR XGB SGD ET MLP EH ES
1PCT 74 75 82 77 81 78 80 82 82
2PCT 73 75 81 77 81 77 80 82 82
1PCTB 77 80 82 78 82 80 81 83 84
2PCTB 76 76 82 79 82 80 82 83 83
1PCTM 74 81 83 78 81 81 80 83 84
2PCTM 73 80 82 79 82 81 80 83 84
1PCTMB 54 80 83 73 83 83 82 84 84
2PCTMB 54 78 83 73 83 82 82 84 84

AVG 69 78 82 77 82 80 81 83 83

Table X shows the average F1 score from post-comment

pairs data without emojis. The SVM-RBF method yielded

the highest F1 score value. The average F1 score value

reached 76.46%, an increase of +0.07% compared to the F1

score of comment-only data. The average value of the F1

score had the highest increment compared to its accuracy.

This result indicates that post-comment can be horizontally

stacked as pairs of data to improve spam detection

performance. However, the average performance score of F1

Score without Emoji of post-and-comment pairs also

indicates that it can and needs to be improved using the emoji

feature and other scenarios. Based on the results of the study,

it can be seen that the worst method was DT which reached

the lowest value of 46%, followed by KNN and BNB.

Ensemble ES got an F1 score which was higher than EH.
TABLE X. THE AVERAGE F1 SCORE OF POST– COMMENT PAIRS WITHOUT

EMOJIS (IN PERCENT)

F1 Score NB BNB CNB SVML RBF KNN7 AB
1PCT 75 62 77 79 80 69 68
2PCT 75 62 77 79 80 68 68
1PCTB 78 76 NA 82 85 58 71
2PCTB 78 74 NA 82 85 57 72
1PCTM 74 70 78 80 80 70 72
2PCTM 75 63 78 80 80 68 72
1PCTMB 80 77 NA 83 86 60 70
2PCTMB 79 75 NA 83 86 57 70
AVG 76,75 69,88 77,50 81,00 82,75 63,38 70,38

F1 Score DT RF LR XGB SGD ET MLP EH ES
1PCT 73 74 79 71 78 76 77 79 80
2PCT 72 74 78 71 79 76 78 79 79
1PCTB 77 80 82 78 82 80 81 83 84
2PCTB 76 76 82 79 82 80 82 83 83
1PCTM 71 78 80 74 78 79 78 80 81
2PCTM 71 77 79 76 80 79 78 80 81
1PCTMB 46 80 83 72 83 83 82 84 84
2PCTMB 46 78 83 72 83 82 82 84 84

AVG 67 77 81 74 81 79 80 82 82

3) DETECTION PERFORMANCE ON COMMENT DATA
WITH EMOJIS

In this section, we explore the detection performance on the

comment-only data with emoji. We wanted to know how

emojis can affect the performance of comment-only data.

Based on the data in Table XI, it was found that the average

accuracy of the comment-only data using the emoji feature

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

was 79.82%. The SVM-RBF method yielded the highest

accuracy values, which reached 88% (the highest until now)

in 1CTMB scenarios. The DT method had the lowest

accuracy at 51% in the 1CSMB scenario. It can also be seen

that the emojis converted into the text format (emoji-text)

had a higher value than the original emoji symbols in UTF-8

encoding (emoji-symbols). Interestingly, the performance of

1-gram and 2-gram token features with balanced data was the

same as with non-balanced data. The ES method also

performed better than EH in terms of accuracy, except in the

CSMB scenario.
TABLE XI. THE AVERAGE ACCURACY OF COMMENT-ONLY DATA WITH

EMOJIS (IN PERCENT)

Accuracy NB BNB CNB SVML RBF KNN7 AB
1CT 83 78 83 87 87 77 81
2CT 83 78 82 86 87 77 81
1CS 82 82 83 83 84 81 80
2CS 81 81 83 83 83 80 80
1CTB 79 80 NA 84 87 79 82
2CTB 78 76 NA 84 86 78 81
1CSB 73 65 NA 72 72 70 67
2CSB 73 64 NA 68 72 70 68
1CTM 83 78 85 87 87 77 83
2CTM 83 78 84 86 87 76 81
1CSM 81 79 85 83 84 77 79
2CSM 79 78 79 83 76 79 80
1CTMB 82 80 NA 86 88 79 77
2CTMB 82 76 NA 85 87 78 76
1CSMB 78 65 NA 72 76 77 60
2CSMB 78 64 NA 71 76 69 72
AVG 79,9 75,1 83,0 81,3 82,4 76,5 76,8

Accuracy DT RF LR XGB SGD ET MLP EH ES
1CT 83 86 86 83 86 86 86 87 87
2CT 83 86 86 83 86 86 85 87 87
1CS 81 83 83 81 83 83 82 84 84
2CS 80 82 83 81 83 82 82 83 83
1CTB 83 86 85 84 83 86 85 86 86
2CTB 83 85 85 83 85 85 85 86 86
1CSB 73 75 72 71 72 76 75 74 76
2CSB 73 74 72 71 72 75 74 74 75

1CTM 79 86 87 85 87 87 86 87 87

2CTM 78 86 86 84 86 86 85 87 87
1CSM 70 80 83 82 83 78 84 84 85

2CSM 79 84 78 84 76 84 84 84 84

1CTMB 67 79 86 71 86 87 83 86 86
2CTMB 67 75 86 72 86 82 83 86 85

1CSMB 51 57 75 51 75 67 79 81 67

2CSMB 55 64 75 56 74 66 79 81 72

AVG 74 79 82 76 81 81 82 84 82

Based on the information in Table XII, it was found that

the average F1 score from comment-only data using the

emoji feature was 75.33%. The SVM-RBF method also

yielded the highest F1-score value. In the case of balanced

emoji symbols, the DT methods had decreased performance

significantly compared to text emojis until it reached 37%.

Ensemble soft voting also performed the best on average

compared to the other methods.
TABLE XII. THE AVERAGE F1 SCORE OF COMMENT-ONLY DATA WITH

EMOJIS (IN PERCENT)

F1 Score NB BNB CNB SVML RBF KNN7 AB

1CT 74 65 79 82 82 74 70
2CT 75 64 77 81 81 74 70

1CS 69 69 76 74 75 68 69

2CS 68 68 75 74 74 67 68

1CTB 78 80 NA 84 87 79 82
2CTB 78 76 NA 84 86 78 81

1CSB 72 63 NA 71 70 70 65

2CSB 72 62 NA 66 70 70 65
1CTM 74 66 81 82 82 74 75

2CTM 75 65 80 82 81 73 72

1CSM 68 64 79 74 75 72 69
2CSM 70 70 73 74 53 71 69

1CTMB 82 80 NA 86 88 79 76

2CTMB 82 76 NA 85 87 77 75
1CSMB 77 63 NA 71 75 77 56

2CSMB 78 62 NA 70 75 68 72

AVG 74,5 68,3 77,5 77,5 77,6 73,2 70,9

F1
Score DT RF LR XGB SGD ET MLP EH ES
1CT 78 81 81 73 82 81 81 82 82
2CT 78 81 81 73 81 81 80 81 82
1CS 73 75 74 70 74 75 75 74 75
2CS 72 73 73 68 73 74 74 74 74
1CTB 83 86 85 84 83 86 85 86 86
2CTB 83 85 85 83 85 85 85 86 86
1CSB 72 75 71 70 70 75 74 73 75
2CSB 72 73 71 69 71 75 73 73 75

1CTM 75 81 82 79 82 82 81 83 83
2CTM 73 81 81 78 82 82 81 82 82

1CSM 65 75 73 75 73 73 78 75 77

2CSM 74 78 64 76 64 78 77 76 76
1CTMB 64 78 86 69 86 87 83 86 86

2CTMB 65 75 86 71 86 82 83 86 85

1CSMB 37 49 75 37 74 65 79 81 65
2CSMB 48 61 74 47 74 64 79 81 71

AVG 70 75 78 70 78 78 79 80 79

4) PERFORMANCE TESTING ON POST-COMMENT
PAIRS DATA WITH EMOJIS

After experimenting with comment-only data with emojis,

we continued testing the performance on post-and-comment

pairs with emojis. Table XIII displays that the average

accuracy of post-comment pairs data using the emoji feature

was 80.36%. The SVM-RBF method with a 1PCTMB

scenario yielded the highest accuracy value at 90% (the best

accuracy so far). Still the same with comment-only data with

emojis, emoji text produced a better result than emoji

symbols in UTF-8 encoding. Based on these results, the

accuracy of the stacked post-comment pairs data with emojis

was higher than the comment-only data with emojis, reaching

only 79.81%. It increased by 0.6%. This result was also

better than the accuracy of post-comment pairs data with no

emoji (only 78.42%), and the accuracy of comment-only data

without emojis (78.49%). It increased by 1.94% and 1.87%.

The DT method reached the worst accuracy with a 1CSMB

scenario at 52%, and the ensemble ES was better than EH in

the average accuracy at 84.875%. The ensemble methods

could not outperform the single classifier but always yielded

the highest result in average accuracy among the others.
TABLE XIII. THE ACCURACY OF POST-COMMENT PAIRS DATA WITH

EMOJIS (IN PERCENT)

Accuracy NB BNB CNB SVML RBF KNN7 AB
1PCT 83 79 84 87 88 80 81
2PCT 83 83 83 87 87 78 82

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

1PCS 81 81 81 83 83 76 80
2PCS 82 78 80 83 83 76 80
1PCTB 81 80 NA 85 89 74 81
2PCTB 81 76 NA 85 89 72 81
1PCSB 73 68 NA 77 78 68 69
2PCSB 74 66 NA 77 78 67 69
1PCTM 83 78 84 87 88 80 83
2PCTM 83 78 83 87 87 79 82
1PCSM 82 78 81 84 84 77 77
2PCSM 82 78 80 83 84 77 77
1PCTMB 81 79 NA 86 90 75 76
2PCTMB 81 76 NA 85 89 72 76
1PCSMB 75 68 NA 77 78 67 57
2PCSMB 74 66 NA 77 78 68 75
AVG 79,9 75,8 82,0 83,1 84,6 74,1 76,6

Accuracy DT RF LR XGB SGD ET MLP EH ES
1CT 81 84 87 84 87 85 86 87 87
2CT 82 83 87 84 87 84 85 87 87
1CS 79 82 83 82 83 82 82 83 83
2CS 79 82 83 82 83 82 82 83 83
1CTB 81 84 85 86 85 85 85 87 88
2CTB 82 84 85 85 85 84 85 86 87
1CSB 76 80 77 77 77 80 80 79 80
2CSB 76 79 77 77 77 80 79 79 80
1CTM 81 85 87 85 87 86 84 87 88

2CTM 79 85 87 85 87 86 86 87 88
1CSM 73 83 84 83 84 83 83 84 85

2CSM 73 83 84 82 84 83 83 84 85

1CTMB 66 84 86 74 86 86 86 87 87
2CTMB 69 83 85 71 86 85 85 86 87

1CSMB 52 81 77 57 77 82 81 79 81

2CSMB 54 82 77 70 77 82 81 80 82

AVG 74 83 83 79 83 83 83 84 85

Table XIV shows that the average F1 score from post-

comment data using the emoji feature was 75.86%. The

SVM-RBF method still produced the highest F1-score value

at 88% in all balanced emoji text scenarios. On the other

hand, the DT method performed worst at just 52%. These

results demonstrate an increase in F1-score compared to

comment-only data with emojis but a very slight decrease in

comment-only and post-comment pairs with emojis. This

result means that the post-comment pairs approach and the

emoji feature strongly influence the spam comment detection

performance. We can see that the emoji feature had a higher

impact than the post-comment pairs approach. Until this step,

the converted emoji text was superior to the emoji symbols.

As usual, the soft ensemble soft voting had the highest

average F1 score among the other methods.
TABLE XIV. THE F1 SCORE OF POST-COMMENT PAIRS WITH EMOJI (IN

PERCENT)

F1 Score NB BNB CNB SVML RBF KNN7 AB
1PCT 74 65 79 82 82 74 70
2PCT 75 64 77 81 81 74 70
1PCS 69 69 76 74 75 68 69
2PCS 68 68 75 74 74 67 68
1PCTB 78 80 NA 84 87 79 82
2PCTB 78 76 NA 84 86 78 81
1PCSB 72 63 NA 71 70 70 65
2PCSB 72 62 NA 66 70 70 65
1PCTM 74 66 81 82 82 74 75
2PCTM 75 65 80 82 81 73 72
1PCSM 68 64 79 74 75 72 69
2PCSM 70 70 73 74 53 71 69

1PCTMB 82 80 NA 86 88 79 76
2PCTMB 82 76 NA 85 87 77 75
1PCSMB 77 63 NA 71 75 77 56
2PCSMB 78 62 NA 70 75 68 72
AVG 74,5 68,3 77,5 77,5 77,6 73,2 70,9

F1

Score DT RF LR XGB SGD ET MLP EH ES
1CT 78 81 81 73 82 81 81 82 82
2CT 78 81 81 73 81 81 80 81 82
1CS 73 75 74 70 74 75 75 74 75
2CS 72 73 73 68 73 74 74 74 74
1CTB 83 86 85 84 83 86 85 86 86
2CTB 83 85 85 83 85 85 85 86 86
1CSB 72 75 71 70 70 75 74 73 75
2CSB 72 73 71 69 71 75 73 73 75
1CTM 75 81 82 79 82 82 81 83 83

2CTM 73 81 81 78 82 82 81 82 82

1CSM 65 75 73 75 73 73 78 75 77
2CSM 74 78 64 76 64 78 77 76 76

1CTMB 64 78 86 69 86 87 83 86 86

2CTMB 65 75 86 71 86 82 83 86 85
1CSMB 37 49 75 37 74 65 79 81 65

2CSMB 48 61 74 47 74 64 79 81 71

AVG 70 75 78 70 78 78 79 80 79

5) PERFORMANCE COMPARISON ON COMMENT DATA
WITH AND WITHOUT EMOJI SCENARIO

This section compares the detection performance between

comment-only data with and without emojis. Figure 3 shows

the increment of accuracy between comment-only data with

and without emojis scenarios. Based on the results, it can be

determined that the average increment in accuracy reached

+5.97%, with the highest average improvement results

obtained from the Ada Boost (AB) (+9.57%). RF followed it

with +6.86%. AB achieved the most considerable average

improvement in accuracy of +13.89%. In contrast, the XGB

method obtained the lowest increment (decreasing to -

1.39%). Ensemble hard voting had a higher increment than

soft voting on average accuracy.

FIGURE 3. Accuracy Increment of Comments only with Emoji
and without Emoji Scenario (in Percent)

On the other hand, figure 4 shows the increment of the F1

score between comments only with emojis and without

emojis. Based on this figure, it can be seen that the average

increment in the F1 score reached +4.68%. The highest

-5%

0%

5%

10%

15%

N
B

B
N

B

C
N

B

SV
M

L

SV
M

R
B

F

K
N

N
3

A
B

D
T

R
F LR

X
G

B

SG
D ET

M
LP

H
ar

d

So
ft

Accuracy Increment of Comments with Emoji and
without Emoji Scenario (in Percent)

1CT 2CT 1CTB 2CTB

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

average improvement results were obtained from the AB

value at +7.69%. AB also received the best F1-score

improvement with a +17.14% increment (1CTB). On the

other hand, DT with a 1CTMB scenario got the worst

increment with a decrement until -1.43%. The EH method

got a higher F1 score than ES. The experiment result shows

that the emoji features improved their average accuracy and

F1-score in a range between +4.67% and +5.97%. Moreover,

emoji usage improved spam comment detection

performance, particularly in accuracy.

FIGURE 4. F1-Score Comparison Between Comments with
Emoji and Without Emoji (in Percent)

6) PERFORMANCE COMPARISON ON POST-COMMENT
PAIRS WITH AND WITHOUT EMOJI SCENARIO

This section compares the detection performance between

post-comment pairs with and without emojis. Figure 5

shows the increment of accuracy between post-comment data

without emojis and with emojis scenarios. Based on the

result, it can be determined that the average increment in

accuracy reached +6.64%. It was higher than the

improvement of comment-only data in the previous result.

Surprisingly, the highest average accuracy improvement

results were obtained by DT with +27.78%, and the lowest

average accuracy improvement was obtained by XGB (-

2.74%). The highest improvement method was DT;

meanwhile, the lowest was XGB, both with 2PCTMB

scenarios. The emoji feature on post-comment pairs data

improved spam detection accuracy. Ensemble soft voting

performed better than hard voting in average accuracy

increment.

Figure 6 shows the F1-score increment of post-comment

pairs data with emojis and without emojis scenarios. Based

on this result, it can be seen that the average increment in F1-

score reached the value of +4.65%, with the most

considerable improvement achieved by DT. The highest

scenario was obtained by DT (on 2PCTMB), while BNB (on

1PCTM scenario) received the lowest F1 score. The average

accuracy increment was higher than the average F1 score

increment. The ES method had a higher F1 score increment

than EH.

Figures 5 and 6 show that the accuracy and F1-score using

the emoji feature in post-comment pairs data were higher

than those without using the emoji feature. The increment of

the average F1 score was between +4.65% and +6.64%,

higher than the increment of the comment-only data.

Stacked post-comment pairs improved the performance

compared to just using comment-only data. So, it can be

stated that emojis and post-comment pairs are excellent

combinations for improving spam detection performance.

The methods with the most significant improvement due to

the emoji feature were DT and AB. XGB and AB typically

had the lowest performance in the without-emoji-feature

scenario, but using the emoji feature helped them improve

their performance.

FIGURE 5. Accuracy Increment of Post-Comment Pairs with
Emoji and Without Emoji Scenario (in Percent)

FIGURE 6. F1-Score Increment of Post-Comment Pairs with
Emoji and Without Emoji Scenario (in Percent)

7) PERFORMANCE COMPARISON BETWEEN EMOJI
POST COMMENT PAIRS AND EMOJI COMMENTS ONLY

Based on the previous section, the emoji feature improved

spam detection performance. This section also shows the

-5%

0%

5%

10%

15%

20%

N
B

B
N

B

C
N

B

SV
M

L

SV
M

R
B

F

K
N

N
3

A
B

D
T

R
F LR

X
G

B

SG
D ET

M
LP

H
ar

d

So
ft

F1 Score Increment of Comments with Emoji
and without Emoji Scenario (in Percent)

1CT 2CT 1CTB 2CTB

1CTM 2CTM 1CTMB 2CTMB

-5%

0%

5%

10%

15%

20%

25%

30%

N
B

B
N

B

C
N

B

SV
M

L

SV
M

R
B

F

K
N

N
3

A
B

D
T

R
F LR

X
G

B

SG
D ET

M
LP

H
ar

d

So
ft

Accuracy Increment of Post-Comment Pairs with
Emoji and without Emoji Scenario (in Percent)

1PCT 2PCT 1PCTB 2PCTB
1PCTM 2PCTM 1PCTMB 2PCTMB

-20%

-10%

0%

10%

20%

30%

40%

N
B

B
N

B

C
N

B

SV
M

L

SV
M

R
B

F

K
N

N
3

A
B

D
T

R
F LR

X
G

B

SG
D ET

M
LP

H
ar

d

So
ft

F1 Score Increment of Post-Comment Pairs with
Emoji and without Emoji Scenario (in Percent)

1PCT 2PCT 1PCTB 2PCTB
1PCTM 2PCTM 1PCTMB 2PCTMB

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

performance increment of emojis in comments and post-

comment pairs scenarios. Based on the results in Figure 7,

the average accuracy increment between emoji features in

post-comments according to the methods was +1.53% and

+1.67% according to the scenarios. The best methods that

gained the most improvement were RF, ET, and ES. The

KNN and DT experienced a decrease of -12.79% and -

7.59%, respectively. KNN and DT based on the Tree

algorithm could not perform well, even when using emoji

features.

 Interestingly, scenarios 1CSB, 2CSB, 1CSMB, and

2CSMB produced the best results compared to those of other

scenarios. Emoji symbols were found to produce a higher

increase in the result than emoji text when compared with

comment-only data and post-comment pairs. The emoji

symbols yielded promising results in accuracy when

combined with post-comment pairs data. Ensemble with soft

voting got a higher increment compared to hard voting.

The average F1-score comparison between comments with

emoji feature and post-comments with emoji feature was

+1.90% according to methods and +2.08% according to

scenarios, as shown in Figure 8. The F1 improvement was

favorable because it was higher than the accuracy. The

algorithms that experienced the most significant

improvement were RF and XGB. Unfortunately, the KNN7

got the worst improvement. RF had the most significant

improvement in 1CPSMB and 2CPSMB. Figure 8 also

shows negative values, particularly in KNN and BNB.

Based on comparative data on the effect of emojis on

comments and post comments, it can be seen that the impact

of emojis on comments or post-comments was quite good.

Emojis improved spam comment detection performance

compared to that was done without emoji features. The post-

comment pair could still improve the performance using the

horizontal stacked TF-IDF vectors approach. In general, the

post-comment pair approach was also effective for all the

emoji symbol scenarios that usually get a low result in the

comment-only scenario.

FIGURE 7. Accuracy Increment of Post-Comment Pairs and Comment Only (With Emoji) Scenario

-20%

-10%

0%

10%

20%

30%

40%

50%
Accuracy Increment of Post-Comment Pairs and Comments Only with Emoji

Scenario (in Percent)

1PCT-CT 2PCT-CT 1PCS-CS 2PCS-CS 1PCTB-CTB 2PCTB-CTB

1PCSB-CSB 2PCSB-CSB 1PCTM-CTM 2PCTM-CTM 1PCSM-CSM 2PCSM-CSM

1PTMB-CTMB 2PCTMB-CTMB 1PCSMB-CSMB 2PCSMB-CSMB

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

FIGURE 8. F1 Score Comparison Between Comment Only Data and Post-Comment Pairs Data with Emoji (In Percent)

8) PERFORMANCE COMPARISON BETWEEN EMOJI
TEXT AND EMOJI SYMBOLS ON COMMENTS AND
POST-COMMENT PAIRS

In this section, we compare the effect of converted emojis in

text and symbols to get the best performance. Based on

Figure 9, emoji text improved the average accuracy of

comment-only data by 9.41% compared to emoji symbols. It

can be stated that emoji text was better than emoji symbols

because emoji symbols could not be learned quickly by using

ML. Since there was no negative difference, it can be

concluded that emoji text was superior to emoji symbols

across all ML methods and scenarios. There was a drawback

to this result. We had to convert emoji symbols to text before

detecting spam comments. XGB and RF reached the most

considerable average improvement. On the other hand, the

lowest was the KNN7 method. The best method was XGB

in 1CTSMB (1-gram comment manual features balanced). In

contrast, KNN7 was the worst method in the 1CTS scenario.

Figure 10 shows the average improvement accuracy

between emoji text and emoji symbols in post-comment pairs

data was +6.98%, lower than the comment-only data. The

highest average method was AB which reached a value of

+33.33%, followed by XGB at +29.82%. The lowest average

method was RF, with a value of 3.09%, higher than the

lowest average method in comment-only data (+1.81%). The

F1 score comparison between comment emoji text and

comment emoji symbols had an average of 6.98%. However,

the post-comment comparison got an average of 10.73%,

which was higher than the accuracy. DT method got the

highest average accuracy increment score. The F1 score

comparison could not be displayed here due to the word-

count limit of this article. Figures 9 and 10 illustrate the

accuracy performance between emoji text and emoji symbols

on comment-only data and post-comment pairs. The hard

ensemble voting performed better in the accuracy and F1

score increment comparison.

We believe that post-comment pairs data promises further

investigation because it allows for pairing post-context data

with comments. The use of post-comment as a pair can

provide the contextual relation between a post and a

comment, so it can detect whether the comment is related or

not to the post. In the end, we could determine whether a

comment was spam by using the relation and the context.

-40%

-20%

0%

20%

40%

60%

80%
F1 Score Increment of Post-Comment Pairs And Comment Only With Emoji

Scenario (in Percent)

1PCT-CT 2PCT-CT 1PCS-CS 2PCS-CS 1PCTB-CTB 2PCTB-CTB
1PCSB-CSB 2PCSB-CSB 1PCTM-CTM 2PCTM-CTM 1PCSM-CSM 2PCSM-CSM
1PTMB-CTMB 2PCTMB-CTMB 1PCSMB-CSMB 2PCSMB-CSMB

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

FIGURE 9. Accuracy Comparison Between Emoji Text and Emoji Symbol in Comment Only Data (In Percent)

FIGURE 10. Accuracy Comparison Between Emoji Text and Emoji Symbol in Post-Comment Pairs (In Percent)

9) PERFORMANCE COMPARISON BETWEEN EMOJI
POST-COMMENT PAIRS AND POST-COMMENT
CONCATENATION APPROACH, MANUAL FEATURES,
ENSEMBLE METHOD, AND BALANCED SCENARIO.

In the final section, we evaluate the comparative performance

between post-comment pairs using two approaches. The first

approach was using the post-and-comment data in TFIDF

vectors and then stacking them horizontally as a pair vector.

The second approach was using the post-and-comment data

but by concatenating them as single sentences (post

concatenated with comment) and then converting them into a

TFIDF vector as a single vector. We also compared the

impact of manual features and balanced/unbalanced dataset

scenarios. Table XIV shows that the summary of the average

accuracy improvement of post-comment as horizontally

stacked pairs was +5.49% than post-comment concatenate

(join string) with emojis. On the other hand, the use of post-

comment as the concatenated string post-and-comment

dropped to -6.97% even from the comment-only data in the

average F1 score.

 Moreover, the use of a concatenated string of posts and

comments also dropped by -4.5% in average accuracy

compared to post-comment stacked pairs. We can see that

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

The Accuracy Increment of Comments Only using Emoji Text and Emoji Symbol
Scenario

1CTS 2CTS 1CTSB 2CTSB 1CTSM 2CTSM 1CTSMB 2CTSMB

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

The Accuracy Comparison Between Post-Comment Pairs in Emoji Text and
Emoji Symbol

1CTS 2CTS 1CTSB 2CTSB 1CTSM 2CTSM 1CTSMB 2CTSMB

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

post-comment use in concatenated data was worse than that

in horizontal stacked pairs data. We believe the horizontally

stacked pairs of TFIDF post-comment vectors are one of the

best approaches to represent the post-comment pairs data

using ML techniques. Emojis had more significant features

compared to those without emojis in comments only and

post-comment. Emoji text is better than emoji symbols.

Manual features and balanced scenarios also increased the

accuracy and F1 score. The best scenario from all the

experiments was the comment/post-comment emoji text to

add the feature. Soft ensemble voting got the best average

accuracy and F1 score compared to hard voting.
TABLE XIV. AVERAGE ACCURACY AND F1 SCORE INCREMENT OF POST-

COMMENT PAIRS APPROACH AND POST-COMMENT CONCAT, MANUAL

FEATURES, ENSEMBLE, AND BALANCED SCENARIO (IN PERCENT)

Scenario (with emoji)

Avg Accuracy

Increment

Avg F1 Score

Increment

Post-comment stacked pairs

vs. post-comment

concatenate +5.49 +6.97

Comment-only vs. post-

comment concatenate +4.5 +5.88

Manual features addition vs.

regular +3,75 +1,89

Ensemble hard-voting post-

comment pairs vs. comment

only +0.6 +0.55

Ensemble soft voting post-

comment pairs vs. comment

only +3.1 +3.25

Balanced vs. unbalanced +2.19 +2.96

10) ANALYSIS AND DISCUSSION

Based on our comprehensive study of many scenarios we

discussed previously and the performance comparisons, it

can be concluded that emojis significantly improved the

detection performance of machine learning systems.

Improved performance of emoji usage could reach an

average of +4.65% to +6.64% in terms of accuracy and F1

score. Using post-comment as stacked pairs could improve

the performance by about +5.49% to +6.97% rather than as a

concatenated post-comment. Using emoji text was also better

than emoji symbols in every scenario. Using manual features

could increase the performance from +1.53% to +3.75% in

accuracy. The ensemble methods could improve the

performance from +0.6% to +3.25%. The balanced dataset

also increased by +2.19% to +2.96%, better than the

unbalanced dataset.

Emoji in text format performed better since the emoji

symbol format was more difficult to process by pre-

processing, and the sklearn's TF-IDF library uses word-based

delimiters. Meanwhile, the pre-processing section and the

TFIDF framework fully support emojis in text format. The

dataset converted into a balanced dataset also improved the

performance, particularly F1 scores, because the spam and

non-spam categories became more proportional than before.

The addition of manual features, such as in Table VB, could

also improve the characteristics of the data so that it could be

detected better.

Based on the data obtained, it can also be seen that the best

methods capable of detecting spam comments were the

SVM-RBF, RF, and ET. Most were occupied by tree-based

algorithms, boosting, and ensemble learning. MLP as a

primary deep learning method also yielded promising results,

but it still needed to be explored further, especially pertinent

to hyper-parameters and various other architectures. The

detection performance value only reached an average

between 74.1% and 84.56% in accuracy and between 71,4%

and 81% in the F1 score.

The proposed ensemble machine learning with soft voting

could achieve the best average in both accuracy and F1 score

because the soft voting ensemble method could select the

best classifier using the probability and threshold

automatically. These ensemble methods can be used as the

final model for the production mode. Hard voting had a

lower performance because it used only the majority voting

between the classifiers.

All the experiments attempted to use the comment dataset

independently as a stand-alone dataset, as well as the post-

and-comment datasets as horizontally stacked pair vectors.

Merging post-comment data as concatenated data yielded

poorer results than merging post-comment data as post-

comment pairings. It was still necessary for remark spam

detection to pay closer attention to the post context. Deep

learning is an alternative technique that must be evaluated

with exemplary architecture, especially for processing the

context between comments and posts as a pair of input data

that is simultaneously processed. Further research requires

the detection of spam comments as an integral component of

the document. A comment is regarded spam (irrelevant to

post data) if the detection procedure is carried out in

accordance with the context of the post. The process of spam

detection will be investigated as a classification subtask

known as sentence-pair classification.

V. CONCLUSION

This research aimed to enhance the detection of spam

comments on social media with comprehensive experiments

and analysis based on various test scenarios. This research

differed from other studies that did not include the emoji

feature in its detection method and only detected spam from

the content of the comments. This study investigated the

features of emojis and post-comment pair data to determine

the optimal method, scenario, and features.

The experiment was conducted using 14 state-of-the-art

ML models with various scenarios using the SpamID-Pair

dataset to determine the significance of emoji features, which

were usually ignored in many NLP types of research. We

also investigated the use of post-comment pairs of TFIDF

vectors stacked horizontally to enhance the performance. The

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

results demonstrate the performance and comparison of

accuracy and F1 scores across the various scenarios. The text

emoji feature could enhance spam comment detection on

social media, as evidenced by the performance improvement

using machine learning methods by an average of 4% to 6%.

Post-comment pairs data was also proven to improve

detection performance by an average of 0.7% to 2.11%. To

the best of our knowledge, this spam comment detection

based on the post and comment as a pair is the first to

conduct, especially in the context of Indonesian social media

users. Adding manual features could also enhance detection

performance by an average of 1.35% to 2.18%. The best

methods for spam comment detection were SVM-RBF, RF,

and ET algorithm using the C-PCTM and C-PCTMB

scenarios. The ensemble soft voting method yielded the best

average performance in both accuracy and F1 score rather

than a single classifier. It could be used in production mode.

However, it has one disadvantage due to its big-size model

compared to each/single model without the ensemble

technique. In conclusion, using emojis, a post-comment pairs

approach, and balanced-manual features in both comments

and pairs of comments did improve the performance.

However, this research may not yet fully understand the

context between posts and comments using machine

learning. A suitable model and method to determine the

semantic relationship are still required in future studies. The

context between posts and comments is crucial to know the

relevance between comments and posts, so spam comments

can be better detected to increase the accuracy and F1 score.

We intend to apply the deep learning model in sentence pairs

classification adaptation [49] and adjustment between post

and comment vector representations to determine their

relevance. The comment that is not relevant to the post tends

to be spam.

ACKNOWLEDGMENT

This research is supported by the Department of Computer

Science and Electronics with Grant No.

241/J01.1.28/PL.06.02/2022. We want to thank the

Department of Computer Science and Electronics,

Universitas Gadjah Mada, and the Faculty of Information

Technology, Universitas Kristen Duta Wacana, for all the

support.

REFERENCES
[1] Databooks, “Ini Media Sosial Paling Populer Sepanjang April

2020,” Databooks, 2020.
https://databoks.katadata.co.id/datapublish/2020/05/25/ini-

media-sosial-paling-populer-sepanjang-april-2020 (accessed

Nov. 04, 2020).
[2] S. Aiyar and N. P. Shetty, “N-Gram Assisted Youtube Spam

Comment Detection,” Procedia Comput. Sci., vol. 132, pp. 174–

182, 2018, doi: 10.1016/j.procs.2018.05.181.
[3] A. R. Chrismanto, A. K. Sari, and Y. Suyanto, “CRITICAL

EVALUATION ON SPAM CONTENT DETECTION IN

SOCIAL MEDIA,” J. Theor. Appl. Inf. Technol., vol. 100, no. 8,
pp. 2642–2667, 2022, [Online]. Available:

http://www.jatit.org/volumes/Vol100No8/29Vol100No8.pdf

[4] W. Zhang and H.-M. Sun, “Instagram Spam Detection,” in 2017

IEEE 22nd Pacific Rim International Symposium on Dependable

Computing (PRDC), IEEE, Jan. 2017, pp. 227–228. doi:

10.1109/PRDC.2017.43.
[5] B. Priyoko and A. Yaqin, “Implementation of naive bayes

algorithm for spam comments classification on Instagram,” in

2019 International Conference on Information and
Communications Technology, ICOIACT 2019, IEEE, 2019, pp.

508–513. doi: 10.1109/ICOIACT46704.2019.8938575.

[6] N. A. Haqimi, N. Rokhman, and S. Priyanta, “Detection Of
Spam Comments On Instagram Using Complementary Naïve

Bayes,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13,

no. 3, p. 263, Jul. 2019, doi: 10.22146/ijccs.47046.
[7] A. Chrismanto and Y. Lukito, “Identifikasi Komentar Spam

Pada Instagram,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 8, no.

3, p. 219, 2017, doi: 10.24843/lkjiti.2017.v08.i03.p08.
[8] A. Chrismanto, Y. Lukito, and A. Susilo, “Implementasi

Distance Weighted K-Nearest Neighbor Untuk Klasifikasi Spam

dan Non-Spam Pada Komentar Instagram,” J. Edukasi dan
Penelit. Inform., vol. 6, no. 2, p. 236, 2020, doi:

10.26418/jp.v6i2.39996.

[9] F. Prabowo and A. Purwarianti, “Instagram online shop’s
comment classification using statistical approach,” in

Proceedings - 2017 2nd International Conferences on

Information Technology, Information Systems and Electrical
Engineering, ICITISEE 2017, Yogyakarta: IEEE, 2018, pp. 282–

287. doi: 10.1109/ICITISEE.2017.8285512.
[10] C. Zhang, C. Liu, X. Zhang, and G. Almpanidis, “An up-to-date

comparison of state-of-the-art classification algorithms,” Expert

Syst. Appl., vol. 82, pp. 128–150, 2017, doi:
10.1016/j.eswa.2017.04.003.

[11] C. Mus, “10+ Akun Instagram Dengan Followers Terbanyak Di

Indonesia,” musdeoranje.net, 2015.
http://www.musdeoranje.net/2016/08/akun-instagram-dengan-

followers-terbanyak-di-indonesia.html (accessed Oct. 13, 2021).

[12] S. Rao, A. K. Verma, and T. Bhatia, “A review on social spam
detection: Challenges, open issues, and future directions,” Expert

Syst. Appl., vol. 186, no. March, p. 115742, 2021, doi:

10.1016/j.eswa.2021.115742.

[13] P. K. Roy, J. P. Singh, and S. Banerjee, “Deep learning to filter

SMS Spam,” Futur. Gener. Comput. Syst., vol. 102, pp. 524–

533, 2020, doi: 10.1016/j.future.2019.09.001.
[14] A. Chandra and S. K. Khatri, “Spam SMS Filtering using

Recurrent Neural Network and Long Short Term Memory,”

2019 4th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2019,
pp. 118–122, 2019, doi: 10.1109/ISCON47742.2019.9036269.

[15] A. A. Septiandri and O. Wibisono, “Detecting spam comments

on Indonesia’s Instagram posts,” J. Phys. Conf. Ser., vol. 801,
no. 012069, pp. 1–7, 2017, doi: 10.1088/1742-

6596/755/1/011001.

[16] A. Chrismanto and Y. Lukito, “Klasifikasi Komentar Spam Pada
Instagram Berbahasa Indonesia Menggunakan K-NN,” in

Seminar Nasional Teknologi Informasi Kesehatan (SNATIK),

Yogyakarta: STIKES Surya Global, 2017, pp. 298–306.
[17] A. Talha and R. Kara, “A Survey of Spam Detection Methods on

Twitter,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 3, pp. 29–38,

2017, doi: 10.14569/ijacsa.2017.080305.

[18] N. M. Samsudin, C. F. B. Mohd Foozy, N. Alias, P. Shamala, N.

F. Othman, and W. I. S. Wan Din, “Youtube spam detection

framework using naïve bayes and logistic regression,” Indones.
J. Electr. Eng. Comput. Sci., vol. 14, no. 3, pp. 1508–1517,

2019, doi: 10.11591/ijeecs.v14.i3.pp1508-1517.

[19] N. Alias, C. F. M. Foozy, and S. N. Ramli, “Video spam
comment features selection using machine learning techniques,”

Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 2, pp. 1046–

1053, 2019, doi: 10.11591/ijeecs.v15.i2.pp1046-1053.
[20] N. Banik and M. H. H. Rahman, “Toxicity Detection on Bengali

Social Media Comments using Supervised Models,” ICIET 2019

- 2nd Int. Conf. Innov. Eng. Technol., pp. 23–24, 2019, doi:
10.1109/ICIET48527.2019.9290710.

[21] R. Abinaya, E. Bertilla Niveda, and P. Naveen, “Spam detection

on social media platforms,” 2020 7th Int. Conf. Smart Struct.
Syst. ICSSS 2020, pp. 31–33, 2020, doi:

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

10.1109/ICSSS49621.2020.9201948.

[22] P. Shil, U. S. Rahman, M. Rahman, and M. S. Islam, “An

Approach for Detecting Bangla Spam Comments on Facebook,”
Proc. Int. Conf. Electron. Commun. Inf. Technol. ICECIT 2021,

no. September, pp. 14–16, 2021, doi:

10.1109/ICECIT54077.2021.9641358.
[23] C. Fatichah, W. F. Lazuardi, D. A. Navastara, N. Suciati, and A.

Munif, “A Content Filtering from Spam Posts on Social Media

using Weighted Multimodal Approach,” J. Comput. Sci., vol. 17,
no. 1, pp. 55–66, 2021, doi: 10.3844/jcssp.2021.55.66.

[24] H. Oh, “A YouTube Spam Comments Detection Scheme Using

Cascaded Ensemble Machine Learning Model,” IEEE Access,
pp. 144121–144128, 2021, doi:

10.1109/ACCESS.2021.3121508.

[25] Y. Tashtoush, A. Magableh, O. Darwish, L. Smadi, O. Alomari,
and A. ALghazoo, “Detecting Arabic YouTube Spam Using

Data Mining Techniques,” in 2022 10th International

Symposium on Digital Forensics and Security (ISDFS), IEEE,
Jun. 2022, pp. 1–5. doi: 10.1109/ISDFS55398.2022.9800840.

[26] A. Sinhal and M. Maheshwari, “YouTube: Spam Comments

Filtration using Hybrid Ensemble Machine Learning Models,”
Int. J. Emerg. Technol. Adv. Eng., vol. 12, no. 10, pp. 169–182,

2022, doi: 10.46338/ijetae1022_18.

[27] R. Wongso, F. A. Luwinda, B. C. Trisnajaya, O. Rusli, and
Rudy, “News Article Text Classification in Indonesian

Language,” Procedia Comput. Sci., vol. 116, pp. 137–143, 2017,
doi: 10.1016/j.procs.2017.10.039.

[28] F. Z. Ruskanda, “Study on the Effect of Preprocessing Methods

for Spam Email Detection,” Indones. J. Comput., vol. 4, no. 1, p.
109, 2019, doi: 10.21108/indojc.2019.4.1.284.

[29] W. Etaiwi and G. Naymat, “The Impact of applying Different

Preprocessing Steps on Review Spam Detection,” Procedia
Comput. Sci., vol. 113, pp. 273–279, 2017, doi:

10.1016/j.procs.2017.08.368.

[30] G. Salton and C. Buckley, “Term-weighting approaches in
automatic text retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp.

513–523, Jan. 1988, doi: 10.1016/0306-4573(88)90021-0.

[31] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval, 1st editio. Cambridge: Cambridge

University Press, 2008. doi: 10.1017/cbo9780511809071.

[32] H. Zhang, “The Optimality of Naive Bayes,” in Proceedings of
the Seventeenth International Florida Artificial Intelligence

Research Society Conference, Florida, USA: AAAI Press, 2004,

pp. 562–567. [Online]. Available:
http://www.aaai.org/Library/FLAIRS/2004/flairs04-097.php

[33] Suyanto, Machine Learning Tingkat Dasar dan Lanjut, 1st ed.

Bandung: Penerbit Informatika, 2018.
[34] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling

the Poor Assumptions of Naive Bayes Text Classifiers,” in

ICML’03: Proceedings of the Twentieth International
Conference on International Conference on Machine Learning,

Washington, DC, USA: AAAI Press, 2003, pp. 616–623. doi:

10.5555/3041838.3041916.
[35] Scikit-Learn, “1.4. Support Vector Machines — scikit-learn

0.23.2 documentation,” Scikit-Learn Documentation, 2021.

https://scikit-learn.org/stable/modules/svm.html (accessed Nov.

19, 2020).

[36] Suyanto;, Data mining untuk klasifikasi dan klasterisasi data, 1st

ed. Bandung: Informatika, 2017. Accessed: Nov. 19, 2020.
[Online]. Available:

//catalogue.ubharajaya.ac.id/slims/index.php?p=show_detail&id

=39879
[37] J. Han, M. Kamber, and J. Pei, Data Mining : Concepts and

Techniques, 3rd ed. Morgan Kaufmann, 2011. Accessed: Nov.

19, 2020. [Online]. Available: https://www.amazon.com/Data-
Mining-Concepts-Techniques-Management/dp/0123814790

[38] P. Soucy and G. W. Mineau, “A simple KNN algorithm for text

categorization,” Proc. - IEEE Int. Conf. Data Mining, ICDM, pp.
647–648, 2001, doi: 10.1109/icdm.2001.989592.

[39] J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn., vol.

1, no. 1, pp. 81–106, 1986, doi: 10.1023/A:1022643204877.
[40] Sklearn, “sklearn.tree.DecisionTreeClassifier,” sklearn 1.1.1

documentiation, 2022. https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeCla

ssifier.html (accessed Jul. 24, 2022).
[41] Y. Freund and R. E. Schapire, “A Decision-Theoretic

Generalization of On-Line Learning and an Application to

Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139,
1997, doi: 10.1006/jcss.1997.1504.

[42] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting

system,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016,

pp. 785–794. doi: 10.1145/2939672.2939785.

[43] N. Bhandari, “A Gentle Introduction to XGBoost for Applied
Machine Learning,” Medium, 2018.

https://machinelearningmastery.com/gentle-introduction-

xgboost-applied-machine-learning/ (accessed Dec. 16, 2020).
[44] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized

trees,” Mach Learn, vol. 63, pp. 3–42, 2006, doi:

10.1007/s10994-006-6226-1.
[45] J. Brownlee, “ExtraTreesClassifier. How does

ExtraTreesClassifier reduce… | by Naman Bhandari | Medium,”

Machine Learning Mastery, 2016.
https://medium.com/@namanbhandari/extratreesclassifier-

8e7fc0502c7 (accessed Dec. 16, 2020).

[46] L. Rokach, Pattern Classification Using Ensemble Methods, vol.
75. in Series in Machine Perception and Artificial Intelligence,

vol. 75. WORLD SCIENTIFIC, 2009. doi: 10.1142/7238.
[47] A. Tharwat, “Classification assessment methods,” Appl. Comput.

Informatics, vol. 17, no. 1, pp. 168–192, 2018, doi:

10.1016/J.ACI.2018.08.003/FULL/PDF.
[48] A. R. Chrismanto, A. K. Sari, and Y. Suyanto, “SPAMID-PAIR:

A Novel Indonesian Post–Comment Pairs Dataset Containing

Emoji,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 11, pp. 92–
100, 2022, doi: 10.14569/IJACSA.2022.0131110.

[49] J. Pei, Y. Wu, Z. Qin, Y. Cong, and J. Guan, “Attention-based

model for predicting question relatedness on Stack Overflow,” in
2021 IEEE/ACM 18th International Conference on Mining

Software Repositories (MSR), IEEE, May 2021, pp. 97–107. doi:

10.1109/MSR52588.2021.00023.

ANTONIUS RACHMAT CHRISMANTO

Antonius Rachmat Chrismanto, S.Kom.,
M.Cs. has been a senior lecturer and doctoral

student at Universitas Gadjah Mada since

2020. His research interests are text mining,
natural language processing, and social media

analysis. He got his bachelor's degree from

Universitas Kristen Duta Wacana, Indonesia
(2004), and his master's degree from

Universitas Gadjah Mada, Indonesia (2008).

He also authored two books on algorithms and GUI programming. His
publications are available on Research Gate.

ANNY KARTIKA SARI Anny Kartika
Sari, S.Si., M.Sc., Ph.D., is a senior lecturer

and associate professor at Universitas Gadjah
Mada. Her research interests are discrete

structures and ontology. She got her

bachelor's degree from Universitas Gadjah
Mada (2000), master's degree from

Universiteit Twente, The Netherlands (2004),

and Ph.D. from La Trobe University,
Australia (2014).

YOHANES SUYANTO Dr. Yohanes Suyanto,
M.Ikom, is a senior lecturer and associate professor

at Universitas Gadjah Mada. His research interests

are text-to-speech, multimedia, and GIS. He got
her bachelor's degree from Universitas Gadjah

Mada (1987), a master's degree from Universitas

Indonesia, and a Doctoral degree from Universitas
Gadjah Mada (2014).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3299853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

