22104828, Josevto Tri Umpunu (2017) KLASIFIKASI JENIS MOTIF BATIK YOGYAKARTA BERDASARKAN POLA GARIS MENGGUNAKAN LEARNING VECTOR. Final Year Projects (S1) thesis, Universitas Kristen Duta Wacana.
Text (Skripsi Informatika)
22104828_bab1_bab5_daftarpustaka.pdf Download (3MB) |
|
Text (Skripsi Informatika)
22104828_bab2-sd-bab4_lampiran.pdf Restricted to Registered users only Download (4MB) | Request a copy |
Abstract
Batik merupakan salah satu simbol penting bagi beberapa daerah kususnya di daerah Jawa.Di dalam adat Jawa, Batik merupakan symbol yang digunakan dalam acara keagamaan, acara pernikahan,Perkembangan batikpun dimulai di Jawa Tengah, dan batik Yogyakarta merupakan salah satu dari perkembangan batik yang ada pada saat ini. Perkembangan batik memunculkan banyak jenis jenis batik dari berbagai daerah dengan nama yang berbeda-beda, namun yang membuat batik-batik disetiap daerah berbeda adalah motif yang terdapat pada batik itu sendiri. Klasifikasi batik merupakan salah satu langkah yang dapat dilakukan dalam membantu mengenali kembali jenis jenis batik serta menjaga unsur dan motif utama dari batik sehingga budaya batik di Yogyakarta tetap terjaga.Salah satu algoritma yang bias digunakan untuk proses klasifikasi motif batik tersebut adalah algoritma Learning Vector Quantization (LVQ) agar proses klasifikasi berjalan dengan baik, maka algoritma LVQ akan didukung oleh thinning menggunakan zhang-suen. Hasil dari penelitian yang menggunakan 200 sampel citra untuk diproses dalam sistem menunjukkan bahwa algoritma LVQ memiliki keakuratan sebesar 25% dalam proses Klasifikasi citra batik Yogyakarta. Ada beberapa parameter yang mempengaruhi algoritma ini dalam proses Klasifikasi citra batik seperti Learning rate, Error rate, dan Max Epoch.
Item Type: | Student paper (Final Year Projects (S1)) |
---|---|
Uncontrolled Keywords: | Algoritma, Zhang suen, Learning Vector Quantization, Klasifikasi, Citra, |
Subjects: | Q Ilmu Pengetahuan > Matematika > Komputer Elektronik. Ilmu Komputer Z Bibliografi. Ilmu Perpustakaan. Sumber Informasi > Sumber-sumber Informasi |
Divisions: | Fakultas Teknologi Informasi > Prodi Informatika |
Depositing User: | Ms Lea Destiany |
Date Deposited: | 28 Jun 2021 03:01 |
Last Modified: | 28 Jun 2021 03:01 |
URI: | http://katalog.ukdw.ac.id/id/eprint/4564 |
Actions (login required)
View Item |