22064136, TRY HARDIYANTI (2015) STUDI LITERATUR PENERAPAN OCR PADA PENGENALAN TEKS. Final Year Projects (S1) thesis, Universitas Kristen Duta Wacana.
Text (Skripsi Informatika)
22064136_bab1_bab5_daftarpustaka.pdf Download (3MB) |
|
Text (Skripsi Informatika)
22064136_bab2-sd-bab4_lampiran.pdf Restricted to Registered users only Download (3MB) | Request a copy |
Abstract
Pengenalan teks merupakan salah satu teknologi pada komputer untuk mengolah dan mengenali citra, berupa teks dengan tulisan tangan maupun dengan sebuah font. Aplikasi komputer selama ini mengalami perbedaan dalam mengolah hasil dari pengenalan citra yang berupa teks. Tujuan dari penelitian ini membandingkan dari tiga metode yang sering digunakan dalam pengenalan teks. Ketiga metode tersebut Template Matching, Backpropagation dan Support Vector Machine (SVM). Metode Template Matching dilakukan dengan cara membandingkan template tertentu dengan template pada basis data. Pengenalan dengan metode ini menghasilkan citra yang berbeda dari citra aslinya karena template yang digunakan sebagai acuan berbeda dengan citra uji. Metode Backpropagation merupakan suatu algoritma pelatihan terbimbing yang menggunakan error output untuk mengubah nilai bobot-bobotnya dalam arah mundur. Metode ini memiliki kekurangan karena tidak dapat mengenali huruf. Metode SVM digunakan dalam klasifikasi. SVM melakukan penggolongan biner dengan fungsi diskriminan sehingga menjadi fungsi kernel atas semua sampel pelatihan. Pengenalan dengan metode ini menghasilkan citra yang dapat dikenali, baik berupa huruf maupun angka. Penelitian ini telah menguji ketiga metode tersebut dan menyimpulkan metode SVM lebih baik dibandingkan dengan Template Matching maupun Backpropagation. Disarankan dalam pengenalan teks menggunakan metode SVM, sehingga dapat menghasilkan citra berupa teks dengan jelas dan baik. Hasil persentase yang didapatkan dari pengenalan ini 46 % untuk 50 citra yang diuji. Keterbatasan dari penelitian ini adalah kualitas citra uji yang digunakan. Disarankan untuk penelitian selanjutnya dapat menggunakan kualitas citra yang lebih baik.
Item Type: | Student paper (Final Year Projects (S1)) |
---|---|
Uncontrolled Keywords: | Optical Character Recognition, OCR, Template Matching, Backpropagation, Support Vector Machine, SVM |
Subjects: | Q Ilmu Pengetahuan > Matematika Q Ilmu Pengetahuan > Matematika > Komputer Elektronik. Ilmu Komputer Q Ilmu Pengetahuan > Matematika > Perangkat Lunak (Software) Komputer |
Divisions: | Fakultas Teknologi Informasi > Prodi Informatika |
Depositing User: | Mr Brayen Samuel Paendong |
Date Deposited: | 03 Jun 2020 02:43 |
Last Modified: | 03 Jun 2020 02:43 |
URI: | http://katalog.ukdw.ac.id/id/eprint/2340 |
Actions (login required)
View Item |